Abstract:
Disclosed is a method for training a spoken dialog service component from website data. Spoken dialog service components typically include an automatic speech recognition module, a language understanding module, a dialog management module, a language generation module and a text-to-speech module. The method includes selecting anchor texts within a website based on a term density, weighting those anchor texts based on a percent of salient words to total words, and incorporating the weighted anchor texts into a live spoken dialog interface, the weights determining a level of incorporation into the live spoken dialog interface.
Abstract:
The invention relates to a system and method for gathering data for use in a spoken dialog system. An aspect of the invention is generally referred to as an automated hidden human that performs data collection automatically at the beginning of a conversation with a user in a spoken dialog system. The method comprises presenting an initial prompt to a user, recognizing a received user utterance using an automatic speech recognition engine and classifying the recognized user utterance using a spoken language understanding module. If the recognized user utterance is not understood or classifiable to a predetermined acceptance threshold, then the method re-prompts the user. If the recognized user utterance is not classifiable to a predetermined rejection threshold, then the method transfers the user to a human as this may imply a task-specific utterance. The received and classified user utterance is then used for training the spoken dialog system.
Abstract:
The invention relates to a system and method for gathering data for use in a spoken dialog system. An aspect of the invention is generally referred to as an automated hidden human that performs data collection automatically at the beginning of a conversation with a user in a spoken dialog system. The method comprises presenting an initial prompt to a user, recognizing a received user utterance using an automatic speech recognition engine and classifying the recognized user utterance using a spoken language understanding module. If the recognized user utterance is not understood or classifiable to a predetermined acceptance threshold, then the method re-prompts the user. If the recognized user utterance is not classifiable to a predetermined rejection threshold, then the method transfers the user to a human as this may imply a task-specific utterance. The received and classified user utterance is then used for training the spoken dialog system.
Abstract:
A system and method are disclosed for generating customized text-to-speech voices for a particular application. The method comprises generating a custom text-to-speech voice by selecting a voice for generating a custom text-to-speech voice associated with a domain, collecting text data associated with the domain from a pre-existing text data source and using the collected text data, generating an in-domain inventory of synthesis speech units by selecting speech units appropriate to the domain via a search of a pre-existing inventory of synthesis speech units, or by recording the minimal inventory for a selected level of synthesis quality. The text-to-speech custom voice for the domain is generated utilizing the in-domain inventory of synthesis speech units. Active learning techniques may also be employed to identify problem phrases wherein only a few minutes of recorded data is necessary to deliver a high quality TTS custom voice.
Abstract:
A system and method are disclosed that improve automatic speech recognition in a spoken dialog system. The method comprises partitioning speech recognizer output into self-contained clauses, identifying a dialog act in each of the self-contained clauses, qualifying dialog acts by identifying a current domain object and/or a current domain action, and determining whether further qualification is possible for the current domain object and/or current domain action. If further qualification is possible, then the method comprises identifying another domain action and/or another domain object associated with the current domain object and/or current domain action, reassigning the another domain action and/or another domain object as the current domain action and/or current domain object and then recursively qualifying the new current domain action and/or current object. This process continues until nothing is left to qualify.
Abstract:
Utterance data that includes at least a small amount of manually transcribed data is provided. Automatic speech recognition is performed on ones of the utterance data not having a corresponding manual transcription to produce automatically transcribed utterances. A model is trained using all of the manually transcribed data and the automatically transcribed utterances. A predetermined number of utterances not having a corresponding manual transcription are intelligently selected and manually transcribed. Ones of the automatically transcribed data as well as ones having a corresponding manual transcription are labeled. In another aspect of the invention, audio data is mined from at least one source, and a language model is trained for call classification from the mined audio data to produce a language model.
Abstract:
A system and method are disclosed for generating customized text-to-speech voices for a particular application. The method comprises generating a custom text-to-speech voice by selecting a voice for generating a custom text-to-speech voice associated with a domain, collecting text data associated with the domain from a pre-existing text data source and using the collected text data, generating an in-domain inventory of synthesis speech units by selecting speech units appropriate to the domain via a search of a pre-existing inventory of synthesis speech units, or by recording the minimal inventory for a selected level of synthesis quality. The text-to-speech custom voice for the domain is generated utilizing the in-domain inventory of synthesis speech units. Active learning techniques may also be employed to identify problem phrases wherein only a few minutes of recorded data is necessary to deliver a high quality TTS custom voice.
Abstract:
Utterance data that includes at least a small amount of manually transcribed data is provided. Automatic speech recognition is performed on ones of the utterance data not having a corresponding manual transcription to produce automatically transcribed utterances. A model is trained using all of the manually transcribed data and the automatically transcribed utterances. A predetermined number of utterances not having a corresponding manual transcription are intelligently selected and manually transcribed. Ones of the automatically transcribed data as well as ones having a corresponding manual transcription are labeled. In another aspect of the invention, audio data is mined from at least one source, and a language model is trained for call classification from the mined audio data to produce a language model.
Abstract:
A system and a method are provided. A speech recognition processor receives unconstrained input speech and outputs a string of words. The speech recognition processor is based on a numeric language that represents a subset of a vocabulary. The subset includes a set of words identified as being for interpreting and understanding number strings. A numeric understanding processor contains classes of rules for converting the string of words into a sequence of digits. The speech recognition processor utilizes an acoustic model database. A validation database stores a set of valid sequences of digits. A string validation processor outputs validity information based on a comparison of a sequence of digits output by the numeric understanding processor with valid sequences of digits in the validation database.
Abstract:
A system and method for providing a natural language interface to a database or the Internet. The method provides a response from a database to a natural language query. The method comprises receiving a user query, extracting key data from the user query, submitting the extracted key data to a data base search engine to retrieve a top n pages from the data base, processing of the top n pages through a natural language dialog engine and providing a response based on processing the top n pages.