Abstract:
A system and method for providing a scalable spoken dialog system are disclosed. The method comprises receiving information which may be internal to the system or external to the system and dynamically modifying at least one module within a spoken dialog system according to the received information. The modules may be one or more of an automatic speech recognition, natural language understanding, dialog management and text-to-speech module or engine. Dynamically modifying the module may improve hardware performance or improve a specific caller's speech processing accuracy, for example. The modification of the modules or hardware may also be based on an application or a task, or based on a current portion of a dialog.
Abstract:
A voice-enabled help desk service is disclosed. The service comprises an automatic speech recognition module for recognizing speech from a user, a spoken language understanding module for understanding the output from the automatic speech recognition module, a dialog management module for generating a response to speech from the user, a natural voices text-to-speech synthesis module for synthesizing speech to generate the response to the user, and a frequently asked questions module. The frequently asked questions module handles frequently asked questions from the user by changing voices and providing predetermined prompts to answer frequently asked questions.
Abstract:
A system and method for providing a scalable spoken dialog system are disclosed. The method comprises receiving information which may be internal to the system or external to the system and dynamically modifying at least one module within a spoken dialog system according to the received information. The modules may be one or more of an automatic speech recognition, natural language understanding, dialog management and text-to-speech module or engine. Dynamically modifying the module may improve hardware performance or improve a specific caller's speech processing accuracy, for example. The modification of the modules or hardware may also be based on an application or a task, or based on a current portion of a dialog.
Abstract:
A system and method are disclosed for generating customized text-to-speech voices for a particular application. The method comprises generating a custom text-to-speech voice by selecting a voice for generating a custom text-to-speech voice associated with a domain, collecting text data associated with the domain from a pre-existing text data source and using the collected text data, generating an in-domain inventory of synthesis speech units by selecting speech units appropriate to the domain via a search of a pre-existing inventory of synthesis speech units, or by recording the minimal inventory for a selected level of synthesis quality. The text-to-speech custom voice for the domain is generated utilizing the in-domain inventory of synthesis speech units. Active learning techniques may also be employed to identify problem phrases wherein only a few minutes of recorded data is necessary to deliver a high quality TTS custom voice.
Abstract:
A system and method are disclosed for generating customized text-to-speech voices for a particular application. The method comprises generating a custom text-to-speech voice by selecting a voice for generating a custom text-to-speech voice associated with a domain, collecting text data associated with the domain from a pre-existing text data source and using the collected text data, generating an in-domain inventory of synthesis speech units by selecting speech units appropriate to the domain via a search of a pre-existing inventory of synthesis speech units, or by recording the minimal inventory for a selected level of synthesis quality. The text-to-speech custom voice for the domain is generated utilizing the in-domain inventory of synthesis speech units. Active learning techniques may also be employed to identify problem phrases wherein only a few minutes of recorded data is necessary to deliver a high quality TTS custom voice.