Abstract:
A system and method are disclosed for generating customized text-to-speech voices for a particular application. The method comprises generating a custom text-to-speech voice by selecting a voice for generating a custom text-to-speech voice associated with a domain, collecting text data associated with the domain from a pre-existing text data source and using the collected text data, generating an in-domain inventory of synthesis speech units by selecting speech units appropriate to the domain via a search of a pre-existing inventory of synthesis speech units, or by recording the minimal inventory for a selected level of synthesis quality. The text-to-speech custom voice for the domain is generated utilizing the in-domain inventory of synthesis speech units. Active learning techniques may also be employed to identify problem phrases wherein only a few minutes of recorded data is necessary to deliver a high quality TTS custom voice.
Abstract:
A system and method are disclosed for generating customized text-to-speech voices for a particular application. The method comprises generating a custom text-to-speech voice by selecting a voice for generating a custom text-to-speech voice associated with a domain, collecting text data associated with the domain from a pre-existing text data source and using the collected text data, generating an in-domain inventory of synthesis speech units by selecting speech units appropriate to the domain via a search of a pre-existing inventory of synthesis speech units, or by recording the minimal inventory for a selected level of synthesis quality. The text-to-speech custom voice for the domain is generated utilizing the in-domain inventory of synthesis speech units. Active learning techniques may also be employed to identify problem phrases wherein only a few minutes of recorded data is necessary to deliver a high quality TTS custom voice.