Abstract:
A polymeric stent can be implanted for treatment of the Eustachian tube. The stent can be designed to have length-dependent radial strength to allow it to stay within the Eustachian tube and to allow normal closing and opening of the Eustachian tube. A balloon can be used to implant the stent, and the balloon can be coated with a therapeutic agent. A coated balloon can also be used to transfer therapeutic agents to the sinus cavity during a balloon sinus dilation procedure.
Abstract:
A polymeric stent can be implanted for treatment of the Eustachian tube. The stent can be designed to have length-dependent radial strength to allow it to stay within the Eustachian tube and to allow normal closing and opening of the Eustachian tube. A balloon can be used to implant the stent, and the balloon can be coated with a therapeutic agent. A coated balloon can also be used to transfer therapeutic agents to the sinus cavity during a balloon sinus dilation procedure.
Abstract:
A method for manufacturing a shaping structure having a generally helical profile and configured to support electrodes for delivering electric energy into a cylindrical lumen of a patient. The method comprises providing a mandrel with a circular cylindrical shape and forming a first hole in the mandrel along the elongate axis, such that opposing ends of a bore of the first hole emerge at the proximal end and at the distal end; forming a second hole in the mandrel to extend from the curved surface to connect with the first hole; wrapping a metal wire around the mandrel; and inserting opposing ends of the metal wire into the second and the third hole respectively, and threading the opposing ends of the metal wire until they emerge from the opposing ends of the bore of the first hole; finally, heating the mandrel and the wire.
Abstract:
A method for manufacturing a shaping structure having a generally helical profile and configured to support electrodes for delivering electric energy into a cylindrical lumen of a patient. The method comprises providing a mandrel with a circular cylindrical shape and forming a first hole in the mandrel along the elongate axis, such that opposing ends of a bore of the first hole emerge at the proximal end and at the distal end; forming a second hole in the mandrel to extend from the curved surface to connect with the first hole; wrapping a metal wire around the mandrel; and inserting opposing ends of the metal wire into the second and the third hole respectively, and threading the opposing ends of the metal wire until they emerge from the opposing ends of the bore of the first hole; finally, heating the mandrel and the wire.
Abstract:
A catheter apparatus defining a first lumen with a first internal diameter, the catheter apparatus further comprising a shaping structure having a distal end and a proximal end and a length therebetween, the shaping structure being moveable between a delivery state having a first helical shape, and a deployed state having a second helical shape. A deployment member having a second lumen with a second internal diameter, a first portion of the deployment member being positioned within the first lumen and having a third outside diameter sized to enable the deployment member to slide within the first lumen, the deployment member being operably coupled to the distal end of the shaping structure and being configured such that distal axial movement of the deployment member places the shaping structure in the delivery state, and proximal axial movement of the deployment member places the shaping structure in the deployed state.