摘要:
In the present invention, at least one detonation initiator is positioned downstream of a main combustion chamber, with the initiator oriented such that it projects a detonation initiation wave forward into the main combustion chamber. The main combustion chamber contains a wave reflection surface. The detonation initiation wave is directed into the main combustion chamber and at the wave reflector surface and is used to initiate, or assist in the initiation of, a fuel and gas mixture in the main combustion chamber. The fuel and gas mixture is detonated, creating a high temperature and high pressure wave that is directed out of the main combustion chamber.
摘要:
A two-stage pulse detonation system includes a pre-combustor and a geometric resonator connected via a converging-diverging nozzle to the pre-combustor to create a high temperature and high pressure conditions in the resonator in order to create optimal conditions for detonation initiation. A mixture of a fuel and a gas is burned in the pre-combustor and is passed through the nozzle into the geometric resonator, where the burned mixture is detonated. The detonation propagates through the resonator exit nozzle thus generating thrust.
摘要:
A supersonic propulsion system is provided. The supersonic propulsion system includes a plurality of systems for efficiently creating cyclic detonations and at least one rocket booster device. Each of the systems include at least a first initiator chamber configured to generate an initial wave, at least one main chamber coupled to the first initiator chamber. The main chamber is configured to generate a main wave and to output products of supersonic combustion. The products are generated within the main chamber. The main chamber is configured to enable the main wave to travel upstream and downstream within the main chamber when the first initiator chamber is located outside the main chamber. The system further includes an initial connection section located between the first initiator chamber and the main chamber that enhances a combustion process via shock focusing and shock reflection.
摘要:
A multi-stage combustion fuel reformer (20) wherein heat energy from a leaner-burning stage (22) is used to accelerate the fuel reforming kinetics of a richer-burning stage (28). The two stages may be axially arranged (36) or radially arranged (50) with respect to each other. Both stages (64, 66) may utilize gas-phase combustion; or both stages (78, 82) may utilized catalytic combustion; or both gas-phase ((90) and catalytic combustion (92) may be used together. The multi-stage reformer (112) may form part of a gas-to-liquid fuel reforming system (110).
摘要:
A system for efficiently creating cyclic detonations is provided. The system includes at least a first initiator chamber configured to generate an initial wave, at least one main chamber coupled to the first initiator chamber. The main chamber is configured to generate a main wave and to output products of supersonic combustion. The products are generated within the main chamber. The main chamber is configured to enable the main wave to travel upstream and downstream within the main chamber when the first initiator chamber is located outside the main chamber. The system further includes an initial connection section located between the first initiator chamber and the main chamber that enhances a combustion process via shock focusing and shock reflection.
摘要:
A system for generating thrust is provided. The system includes a first injector, an inner tube configured to receive fuel from the first injector via a first port of the inner tube, where at least a portion of fuel in liquid phase received by the inner tube is configured to flash vaporize upon entering the inner tube via the first port.
摘要:
A method for operating a pulse detonation engine, wherein the method includes channeling air flow from a pulse detonation combustor into a flow mixer having an inlet portion, an outlet portion, and a body portion extending therebetween. The method also includes channeling ambient air past the flow mixer and mixing the air flow discharged from the pulse detonation combustor with the ambient air flow such that a combined flow is generated from the flow mixer that has less flow variations than the air flow discharged from the pulse detonation combustor.
摘要:
A flow control device for use with a pulse detonation chamber including an inlet coupled in flow communication with a source of compressed air. The inlet extends at least partially into the chamber to facilitate controlling air flow into the chamber. The device also includes a body portion extending downstream from and circumferentially around the inlet, wherein the body portion is positioned in flow communication with the inlet.
摘要:
A pulse detonation combustor (PDC) assembly includes an upstream chamber forming an inlet plenum, a downstream chamber including a downstream portion of at least one PDC tube, and an integrated PDC head coupled to the upstream chamber and the downstream chamber. The integrated PDC head is configured to facilitate fuel injection and ignition within the PDC tube. The PDC tube includes an inner seal surface and an outer seal surface configured to mate with the inner seal surface, wherein the inner seal surface includes an elevated section thereon that engages with the outer seal surface such that the PDC tube is free to partially pivot about a longitudinal axis thereof.
摘要:
An aircraft engine is provided with at least one pulse detonation device, and the operational frequency of the pulse detonation device is varied over an operational range of frequencies around a mean frequency value. The pulse detonation device can be positioned upstream, downstream or adjacent to a turbine section of the engine. An additional embodiment of the present invention is an aircraft engine provided with more than one pulse detonation device, and the operational frequency of one, or more, of the pulse detonation devices is varied over an operational range of frequencies around a mean frequency value.