Object segmentation, including sky segmentation

    公开(公告)号:US10311574B2

    公开(公告)日:2019-06-04

    申请号:US15853206

    申请日:2017-12-22

    Applicant: Adobe Inc.

    Abstract: A digital medium environment includes an image processing application that performs object segmentation on an input image. An improved object segmentation method implemented by the image processing application comprises receiving an input image that includes an object region to be segmented by a segmentation process, processing the input image to provide a first segmentation that defines the object region, and processing the first segmentation to provide a second segmentation that provides pixel-wise label assignments for the object region. In some implementations, the image processing application performs improved sky segmentation on an input image containing a depiction of a sky.

    Deep novel view and lighting synthesis from sparse images

    公开(公告)号:US10950037B2

    公开(公告)日:2021-03-16

    申请号:US16510586

    申请日:2019-07-12

    Applicant: ADOBE INC.

    Abstract: Embodiments are generally directed to generating novel images of an object having a novel viewpoint and a novel lighting direction based on sparse images of the object. A neural network is trained with training images rendered from a 3D model. Utilizing the 3D model, training images, ground truth predictive images from particular viewpoint(s), and ground truth predictive depth maps of the ground truth predictive images, can be easily generated and fed back through the neural network for training. Once trained, the neural network can receive a sparse plurality of images of an object, a novel viewpoint, and a novel lighting direction. The neural network can generate a plane sweep volume based on the sparse plurality of images, and calculate depth probabilities for each pixel in the plane sweep volume. A predictive output image of the object, having the novel viewpoint and novel lighting direction, can be generated and output.

    DEEP NOVEL VIEW AND LIGHTING SYNTHESIS FROM SPARSE IMAGES

    公开(公告)号:US20210012561A1

    公开(公告)日:2021-01-14

    申请号:US16510586

    申请日:2019-07-12

    Applicant: ADOBE INC.

    Abstract: Embodiments are generally directed to generating novel images of an object having a novel viewpoint and a novel lighting direction based on sparse images of the object. A neural network is trained with training images rendered from a 3D model. Utilizing the 3D model, training images, ground truth predictive images from particular viewpoint(s), and ground truth predictive depth maps of the ground truth predictive images, can be easily generated and fed back through the neural network for training. Once trained, the neural network can receive a sparse plurality of images of an object, a novel viewpoint, and a novel lighting direction. The neural network can generate a plane sweep volume based on the sparse plurality of images, and calculate depth probabilities for each pixel in the plane sweep volume. A predictive output image of the object, having the novel viewpoint and novel lighting direction, can be generated and output.

    Neural network-based camera calibration

    公开(公告)号:US10964060B2

    公开(公告)日:2021-03-30

    申请号:US16675641

    申请日:2019-11-06

    Applicant: ADOBE INC.

    Abstract: Embodiments of the present invention provide systems, methods, and computer storage media directed to generating training image data for a convolutional neural network, encoding parameters into a convolutional neural network, and employing a convolutional neural network that estimates camera calibration parameters of a camera responsible for capturing a given digital image. A plurality of different digital images can be extracted from a single panoramic image given a range of camera calibration parameters that correspond to a determined range of plausible camera calibration parameters. With each digital image in the plurality of extracted different digital images having a corresponding set of known camera calibration parameters, the digital images can be provided to the convolutional neural network to establish high-confidence correlations between detectable characteristics of a digital image and its corresponding set of camera calibration parameters. Once trained, the convolutional neural network can receive a new digital image, and based on detected image characteristics thereof, estimate a corresponding set of camera calibration parameters with a calculated level of confidence.

    Sky editing based on image composition

    公开(公告)号:US10762608B2

    公开(公告)日:2020-09-01

    申请号:US16119709

    申请日:2018-08-31

    Applicant: Adobe Inc.

    Abstract: Embodiments of the present disclosure relate to a sky editing system and related processes for sky editing. The sky editing system includes a composition detector to determine the composition of a target image. A sky search engine in the sky editing system is configured to find a reference image with similar composition with the target image. Subsequently, a sky editor replaces content of the sky in the target image with content of the sky in the reference image. As such, the sky editing system transforms the target image into a new image with a preferred sky background.

    LEARNING TO ESTIMATE HIGH-DYNAMIC RANGE OUTDOOR LIGHTING PARAMETERS

    公开(公告)号:US20200151509A1

    公开(公告)日:2020-05-14

    申请号:US16188130

    申请日:2018-11-12

    Applicant: ADOBE INC.

    Abstract: Methods and systems are provided for determining high-dynamic range lighting parameters for input low-dynamic range images. A neural network system can be trained to estimate lighting parameters for input images where the input images are synthetic and real low-dynamic range images. Such a neural network system can be trained using differences between a simple scene rendered using the estimated lighting parameters and the same simple scene rendered using known ground-truth lighting parameters. Such a neural network system can also be trained such that the synthetic and real low-dynamic range images are mapped in roughly the same distribution. Such a trained neural network system can be used to input a low-dynamic range image determine high-dynamic range lighting parameters.

    Illumination estimation from a single image

    公开(公告)号:US10607329B2

    公开(公告)日:2020-03-31

    申请号:US15457192

    申请日:2017-03-13

    Applicant: ADOBE INC.

    Abstract: Methods and systems are provided for using a single image of an indoor scene to estimate illumination of an environment that includes the portion captured in the image. A neural network system may be trained to estimate illumination by generating recovery light masks indicating a probability of each pixel within the larger environment being a light source. Additionally, low-frequency RGB images may be generated that indicating low-frequency information for the environment. The neural network system may be trained using training input images that are extracted from known panoramic images. Once trained, the neural network system infers plausible illumination information from a single image to realistically illumination images and objects being manipulated in graphics applications, such as with image compositing, modeling, and reconstruction.

    Fast intrinsic images
    20.
    发明授权

    公开(公告)号:US10297045B2

    公开(公告)日:2019-05-21

    申请号:US14546934

    申请日:2014-11-18

    Applicant: Adobe Inc.

    Abstract: Fast intrinsic images techniques are described. In one or more implementations, a combination of local constraints on shading and reflectance and non-local constraints on reflectance are applied to an image to generate a linear system of equations. The linear system of equations can be solved to generate a reflectance intrinsic image and a shading intrinsic image for the image. In one or more implementations, a multi-scale parallelized iterative solver is used to solve the linear system of equations to generate the reflectance intrinsic image and the shading intrinsic image.

Patent Agency Ranking