Abstract:
An improved combustion method and corresponding apparatus is disclosed, where the method includes oxidizing a fuel in a combustion chamber with an oxidizing stream including an air stream and a first recycled flue gas stream and mixing a produced hot flue gas stream with a second recycled flue gas stream to form reduced temperature flue gas stream which can be used directly in a power generator or to heat a reactor. The method and apparatus allow flow rates of the streams to be adjusted so that temperatures in the combustion chamber and in the heat transfer unit or units of the power generator or reactor can be kept below temperature that would thermally damage the combustion chamber, heat transfer unit or units or the reactors.
Abstract:
A new Kalina thermodynamic cycle is disclosed where a multi-component working fluid is fully vaporized in a boiler utilizing waste heat streams such as flue gas streams from cement kilns so the energy can be extracted from the streams and converted to usable electrical or mechanical energy in a turbine subsystem and after extraction, the spent stream is fully condensed in a distillation-condensation subsystem using air and/or water coolant streams. A new method for implementing the improved Kalina thermodynamic cycle is also disclosed.
Abstract:
A new thermodynamic cycle is disclosed for converting energy from a low temperature stream, external source into useable energy using a working fluid comprising of a mixture of a low boiling component and a higher boiling component and including a higher pressure circuit and a lower pressure circuit. The cycle is designed to improve the efficiency of the energy extraction process by recirculating a portion of a liquid stream prior to further cooling. The new thermodynamic processes and systems for accomplishing these improved efficiencies are especially well-suited for streams from low-temperature geothermal sources.
Abstract:
A process and system for condensing a multi-component fluid is disclosed, where the process and system are designed to provide a substantial increase in a heat transfer coefficient during condensation of multi-component fluids resulting in a drastic reduction in size and cost of heat exchangers need to condense such fluids. The system and method includes a plurality of heat exchangers and at least one scrubber and splitters and mixers supporting streams that allow a mixed stream to be supplied to each heat exchange unit having parameters designed to increase, optimize or maximize the heat transfer coefficient in each heat exchanger.
Abstract:
A new thermodynamic cycle is disclosed for converting energy from a low temperature stream from an external source into useable energy using a working fluid comprising of a mixture of a low boiling component and a higher boiling component and including a higher pressure circuit and a lower pressure circuit. The cycle is designed to improve the efficiency of the energy extraction process by mixing the liquid stream from the high pressure circuit with the spent low pressure circuit stream forming a lean system that can be condensed at a low pressure. The new thermodynamic process and the system for accomplishing it are especially well-suited for streams from low-temperature geothermal sources.