Abstract:
In the position-measuring arrangement having a groove formed in a housing for the fastening of a measurement embodiment. So that different expansion coefficients of the housing and of the measurement embodiment will cause no measurement errors, the measurement embodiment is fastened longitudinally slidable with respect to the housing in the groove. This is achieved by providing in the zone in which the measurement embodiment is held in the groove a sealing compound. A separating layer is provided between measurement embodiment and sealing compound to provide longitudinal movement.
Abstract:
A longitudinal position measuring device for measuring the relative positions of two objects comprising a housing, a measuring scale, and a scanning unit for scanning the measuring scale. The housing is attached to one of the objects and a scanning unit is attached to the other of the objects by means of a fastening member and a connecting element. The scanning unit comprises a light source and four photosensitive elements. The measuring signal produced by the scanning unit and power to the light source are conducted by means of a cable through the connecting element and into the fastening member. The fastening member is rotatably mounted to the connecting rod so that the fastening member may be readily attached to the other object such as a machine cradle. The cable extends through a chamber located in the fastening member and is connected to an electrical box from which the scanning signals may be taken for conduction to either a display or an evaluation unit. The chamber is dimensioned to allow a sufficient length of cable to be stored so that undesirable stresses on the cable are not exerted during rotation of the fastening member about the connecting rod.
Abstract:
An error correction system is disclosed which includes an error correction profile element which extends in a measuring direction inside a housing which contains a measuring scale. The disclosed error compensation system is used to compensate for guidance errors of machines or division errors of the measuring scale. The correction profile element is made as a one piece element having regions of reduced cross sectional area. The profile element is mounted to the housing by means of eccentrics which can be used to adapt the contour of the correction profile element to correspond to the error to be compensated. The error correction profile bends at the regions of reduced cross sectional area while retaining a rectilinear profile in the intermediate regions between the regions of reduced cross sectional area such that a smooth transition is provided between the intermediate regions.
Abstract:
A length measuring device for measuring a relative position of two objects, the length measuring device including a scale in a housing and a scanning unit displaceable in a measuring direction X relative to the scale and the housing, wherein the scanning unit is disposed inside the housing and including a heat-generating electrical component. The length measuring device further including a thermal conduction path designed for transferring heat generated at the heat-generating electrical component to the housing.
Abstract:
A linear measuring arrangement for measuring a relative position of two objects. The linear measuring arrangement includes a unit having a housing and a scale in the housing and a scanning unit, which can be shifted relative to the unit in a measuring direction, wherein the scanning unit is arranged inside the housing and includes a heat-generating electrical component. The arrangement further includes a mounting piece, which is fastened to the scanning unit by a coupling, which is rigid in the measuring direction and resilient transversely thereto, and which extends to a mounting area arranged outside of the housing. The arrangement further includes a heat-conducting element, which is designed for transferring heat generated by the heat generating electrical component to the mounting piece and permits relative movements between the mounting piece and the scanning unit at least transversely to the measuring direction.
Abstract:
A linear measuring arrangement for measuring a relative position of two objects. The linear measuring arrangement includes a unit having a housing and a scale in the housing and a scanning unit, which can be shifted relative to the unit in a measuring direction, wherein the scanning unit is arranged inside the housing and includes a heat-generating electrical component. The arrangement further includes a mounting piece, which is fastened to the scanning unit by a coupling, which is rigid in the measuring direction and resilient transversely thereto, and which extends to a mounting area arranged outside of the housing. The arrangement further includes a heat-conducting element, which is designed for transferring heat generated by the heat generating electrical component to the mounting piece and permits relative movements between the mounting piece and the scanning unit at least transversely to the measuring direction.
Abstract:
An arrangement for fastening a support of a scale of a linear measuring device on a mounting surface of an object to be measured. The arrangement includes a clamping jaw and a force-exerting element urging the clamping jaw against the support. The clamping jaw acts together with the support in such a way that the clamping jaw urges said support with a clamping force that includes 1) a first force component against the mounting surface by the force-exerting element and 2) a second force component that urges the support against an attachment face extending transversely to the mounting surface. The attachment face is directly constituted by an attachment body, which can be fixed positively and free of play in a receptacle on the object to be measured.
Abstract:
A graduated element attachment system in a position measuring system, the graduated element attachment system including a graduated element having a circumferential face and a holder. The holder includes a plurality of resilient elements, wherein each one of the plurality of resilient elements engages the circimferential face in such a manner so that the graduated element is clasped in several directions and wherein each of the plurality of resilient elements exerts a force on the graduated element wherein the exerted forces are directed in such a manner so that the plurality of resilient elements maintain the graduated element in equilibrium.
Abstract:
An encased position measuring instrument for measuring the relative position of two objects comprises a housing, a measuring scale and a scanning unit. The measuring scale is scanned by the scanning unit which is connected to a fastening member by means of a connecting rod. The connecting rod moves through a frontal opening in the housing which is hermetically sealed by a sealing unit. To avoid undesirable constraining forces exerted on the connecting rod when the housing changes position, the sealing unit is fastened to the housing by means of rods or wires. These rods run parallel to the connecting rod and are rigid in the measuring direction but allow movement of the sealing unit at right angles to the measuring direction.
Abstract:
A measuring system for measuring the relative position of tool machine parts compensates for thermally-induced length changes of a spindle stock by means of a scale carrier which acts as an expansion element for a scale. This scale carrier is fastened at one end directly via a fastening element to the spindle stock and at the other end is connected with an adjacent end of the scale, which is mounted on the scale carrier so as to be shiftable in the measuring direction. If the plane of the tool connected to the spindle stock shifts by an amount .DELTA.c in the measuring direction X as a result of temperature rises of the spindle stock, the scale carrier, operating as an expansion element, acts to pivot a rotatable element having an adjustable lever ratio in order to shift the scale in the same direction. In this way, the entire thermally-conditioned displacement of the scale is also made to equal the amount .DELTA.c.