Systems and methods for automated diagnosis and decision support for heart related diseases and conditions
    11.
    发明授权
    Systems and methods for automated diagnosis and decision support for heart related diseases and conditions 有权
    用于心脏相关疾病和病症的自动诊断和决策支持的系统和方法

    公开(公告)号:US07912528B2

    公开(公告)日:2011-03-22

    申请号:US10876801

    申请日:2004-06-25

    IPC分类号: A61B5/05

    CPC分类号: G16H50/20 G06F19/00

    摘要: CAD (computer-aided diagnosis) systems and applications for cardiac imaging are provided, which implement methods to automatically extract and analyze features from a collection of patient information (including image data and/or non-image data) of a subject patient, to provide decision support for various aspects of physician workflow including, for example, automated assessment of regional myocardial function through wall motion analysis, automated diagnosis of heart diseases and conditions such as cardiomyopathy, coronary artery disease and other heart-related medical conditions, and other automated decision support functions. The CAD systems implement machine-learning techniques that use a set of training data obtained (learned) from a database of labeled patient cases in one or more relevant clinical domains and/or expert interpretations of such data to enable the CAD systems to “learn” to analyze patient data and make proper diagnostic assessments and decisions for assisting physician workflow.

    摘要翻译: 提供了用于心脏成像的CAD(计算机辅助诊断)系统和应用,其实现了从受试患者的患者信息(包括图像数据和/或非图像数据)的集合中自动提取和分析特征的方法,以提供 对医师工作流程的各个方面的决策支持,包括例如通过壁运动分析自动评估区域性心肌功能,心脏病的自动诊断和诸如心肌病,冠状动脉疾病和其他与心脏相关的医疗状况等条件,以及其他自动化决策 支持功能。 CAD系统实施机器学习技术,其使用从一个或多个相关临床领域的标记的患者病例的数据库获得(学习)的一组训练数据和/或对这些数据的专家解释,使得CAD系统能够“学习” 分析患者数据,进行适当的诊断评估和决策,以协助医师的工作流程。

    Systems and Methods for Robust Learning Based Annotation of Medical Radiographs
    13.
    发明申请
    Systems and Methods for Robust Learning Based Annotation of Medical Radiographs 有权
    用于健康学习的系统和方法基于医学影像学的注释

    公开(公告)号:US20100284590A1

    公开(公告)日:2010-11-11

    申请号:US12787916

    申请日:2010-05-26

    IPC分类号: G06K9/46 G06K9/00

    摘要: Systems and methods for performing a medical imaging study include acquiring a preliminary scan. A set of local feature candidates is automatically detected from the preliminary scan. The accuracy of each local feature candidate is assessed using multiple combinations of the other local feature candidates and removing a local feature candidate that is assessed to have the lowest accuracy. The assessing and removing steps are repeated until only a predetermined number of local feature candidates remain. A region of interest (ROI) is located from within the preliminary scan based on the remaining predetermined number of local feature candidates. A medical imaging study is performed based on the location of the ROI within the preliminary scan.

    摘要翻译: 用于执行医学成像研究的系统和方法包括获取初步扫描。 从初步扫描中自动检测一组本地特征候选。 使用其他本地特征候选者的多个组合来评估每个本地特征候选者的准确性,并且去除被评估为具有最低精度的局部特征候选。 重复评估和去除步骤,直到仅保留预定数量的局部特征候选。 感兴趣区域(ROI)基于剩余的预定数量的局部特征候选位于初步扫描内。 基于初步扫描中ROI的位置执行医学成像研究。

    System and method for performing probabilistic classification and decision support using multidimensional medical image databases
    14.
    发明授权
    System and method for performing probabilistic classification and decision support using multidimensional medical image databases 有权
    使用多维医学图像数据库执行概率分类和决策支持的系统和方法

    公开(公告)号:US07458936B2

    公开(公告)日:2008-12-02

    申请号:US10703024

    申请日:2003-11-06

    IPC分类号: A61B8/00

    摘要: A system and method for providing decision support to a physician during a medical examination is disclosed. Data is received from a sensor representing a particular medical measurement. The received data includes image data. The received data and context data is analyzed with respect to one or more sets of training models. Probability values for the particular medical measurement and other measurements to be taken are derived based on the analysis and based on identified classes. The received image data is compared with training images. Distance values are determined between the received image data and the training images, and the training images are associated with the identified classes. Absolute value feature sensitivity scores are derived for the particular medical measurement and other measurements to be taken based on the analysis. The probability values, distance values and absolute value feature sensitivity scores are outputted to the user.

    摘要翻译: 公开了一种用于在医学检查期间向医师提供决策支持的系统和方法。 从代表特定医疗测量的传感器接收数据。 所接收的数据包括图像数据。 相对于一组或多组训练模型分析接收到的数据和上下文数据。 特定医疗测量和其他测量的概率值基于分析并基于识别的类别导出。 将接收到的图像数据与训练图像进行比较。 在接收的图像数据和训练图像之间确定距离值,并且训练图像与所识别的类别相关联。 基于分析,针对特定医疗测量和其他测量得出绝对值特征灵敏度得分。 将概率值,距离值和绝对值特征灵敏度得分输出给用户。

    Adaptive Anatomical Region Prediction
    17.
    发明申请
    Adaptive Anatomical Region Prediction 有权
    自适应解剖区域预测

    公开(公告)号:US20140161337A1

    公开(公告)日:2014-06-12

    申请号:US14096206

    申请日:2013-12-04

    IPC分类号: G06K9/62 G06T7/00

    摘要: Disclosed herein is a framework for facilitating adaptive anatomical region prediction. In accordance with one aspect, a set of exemplar images including annotated first landmarks is received. User definitions of first anatomical regions in the exemplar images are obtained. The framework may detect second landmarks in a subject image. It may further compute anatomical similarity scores between the subject image and the exemplar images based on the first and second landmarks, and predict a second anatomical region in the subject image by adaptively combining the first anatomical regions based on the anatomical similarity scores.

    摘要翻译: 本文公开了一种用于促进适应性解剖区域预测的框架。 根据一个方面,接收包括注释的第一地标的一组示例图像。 获得示例图像中的第一解剖区域的用户定义。 框架可以检测主题图像中的第二地标。 它还可以基于第一和第二界标进一步计算对象图像和样本图像之间的解剖学相似性得分,并且基于解剖学相似性得分来自适应地组合第一解剖区域来预测对象图像中的第二解剖区域。

    SYSTEMS AND METHODS FOR DETECTING AND VISUALIZING CORRESPONDENCE CORRIDORS ON TWO-DIMENSIONAL AND VOLUMETRIC MEDICAL IMAGES
    18.
    发明申请
    SYSTEMS AND METHODS FOR DETECTING AND VISUALIZING CORRESPONDENCE CORRIDORS ON TWO-DIMENSIONAL AND VOLUMETRIC MEDICAL IMAGES 有权
    用于检测和观察二维和体积医学图像中的相关检测器的系统和方法

    公开(公告)号:US20100303314A1

    公开(公告)日:2010-12-02

    申请号:US12789535

    申请日:2010-05-28

    IPC分类号: G06K9/00

    摘要: A method is provided for detecting a corresponding region of interest in digital medical images, the method including receiving a plurality of digital images including a primary image, at least one of the images being a projective image, identifying anatomical landmarks and structures within each of the images and correlating the images based on the identified anatomical landmarks and structures identifying a location of interest in the primary image, and automatically identifying a region of interest in the rest of the images, the region of interest corresponding to the identified location of interest in the primary image.

    摘要翻译: 提供了一种用于检测数字医学图像中的对应的感兴趣区域的方法,所述方法包括接收包括主图像的多个数字图像,所述图像中的至少一个是投影图像,识别每个图像内的解剖标志和结构 图像并且基于所识别的解剖学标记和识别主要图像中感兴趣的位置的结构对图像进行关联,并且自动识别其余图像中的感兴趣区域,与所识别的感兴趣的位置相对应的感兴趣区域在 主要形象

    Adaptive anatomical region prediction
    19.
    发明授权
    Adaptive anatomical region prediction 有权
    自适应解剖区域预测

    公开(公告)号:US09336457B2

    公开(公告)日:2016-05-10

    申请号:US14096206

    申请日:2013-12-04

    IPC分类号: G06K9/62 G06T7/00

    摘要: Disclosed herein is a framework for facilitating adaptive anatomical region prediction. In accordance with one aspect, a set of exemplar images including annotated first landmarks is received. User definitions of first anatomical regions in the exemplar images are obtained. The framework may detect second landmarks in a subject image. It may further compute anatomical similarity scores between the subject image and the exemplar images based on the first and second landmarks, and predict a second anatomical region in the subject image by adaptively combining the first anatomical regions based on the anatomical similarity scores.

    摘要翻译: 本文公开了一种用于促进适应性解剖区域预测的框架。 根据一个方面,接收包括注释的第一地标的一组示例图像。 获得示例图像中的第一解剖区域的用户定义。 框架可以检测主题图像中的第二地标。 它还可以基于第一和第二界标进一步计算对象图像和样本图像之间的解剖学相似性得分,并且基于解剖学相似性得分来自适应地组合第一解剖区域来预测对象图像中的第二解剖区域。

    Image-based detection using hierarchical learning
    20.
    发明授权
    Image-based detection using hierarchical learning 有权
    基于图像的检测采用分层学习

    公开(公告)号:US08958614B2

    公开(公告)日:2015-02-17

    申请号:US13553860

    申请日:2012-07-20

    IPC分类号: G06K9/00 G06K9/34 G06K9/62

    摘要: Systems and methods are provided for detecting anatomical components in images. In accordance with one implementation, at least one anchor landmark is detected in an image. The position of the anchor landmark is used to detect at least one bundle landmark in the image. In accordance with another implementation, at least two neighboring landmarks are detected in an image, and used to detect at least one anatomical primitive in the image.

    摘要翻译: 提供了用于检测图像中的解剖组件的系统和方法。 根据一个实施方式,在图像中检测至少一个锚地标。 锚地标的位置用于检测图像中的至少一个束标记。 根据另一实现方式,在图像中检测至少两个相邻的界标,并且用于检测图像中的至少一个解剖图元。