摘要:
A method for implementing a smart antenna in establishing association between a station (STA) and an access point (AP) in a wireless local area network begins by transmitting a beacon frame by the AP on one antenna beam. The beacon frame is received at the STA, which measures the signal quality of the beacon frame. The AP switches to a different antenna beam and repeats the method until the beacon frame has been transmitted on all antenna beams. The STA associates to the AP that transmits the beacon frame with the highest signal quality on one of its antenna beams. A similar method may be used in which the STA sends a probe request frame to the AP, which then responds with probe response frames sent on multiple antenna beams.
摘要:
A method for supporting use of a smart antenna in a wireless local area network (WLAN) including an access point (AP) and a station (STA) begins by selecting an antenna beam by the AP to use for communication with the STA. The selected beam information is sent from the AP to the STA. A packet is transmitted from the STA to the AP, the packet including the selected beam information, whereby the AP uses the selected beam to receive at least a part of the packet.
摘要:
A system for exchanging smart antenna capability information between a transmitting station (STA) and a receiving STA in a wireless communication system includes an antenna capability information element (IE) that includes information regarding the capability of the transmitting STA. The antenna capability IE is sent from the transmitting STA to the receiving STA prior to data transmission between the transmitting STA and the receiving STA. When used in a wireless local area network, the antenna capability IE can be sent as part of a management frame, control frame, or data frame.
摘要:
A client station in a wireless local area network (WLAN) communication system includes a beam commutation algorithm and a smart antenna responsive to the beam commutation algorithm for selecting one of a plurality of directional antenna beams. The smart antenna is configured as a virtual omni-directional antenna by using a commutation of switched directional antenna beams. A switched directional antenna system that performs a commutation sequencing can be blind to environmental conditions and changes.
摘要:
A client station in a wireless local area network (WLAN) communication system includes a beam commutation algorithm and a smart antenna responsive to the beam commutation algorithm for selecting one of a plurality of directional antenna beams. The smart antenna is configured as a virtual omni-directional antenna by using a commutation of switched directional antenna beams. A switched directional antenna system that performs a commutation sequencing can be blind to environmental conditions and changes.
摘要:
A communications device with a switched beam antenna operates in a wireless local area network (WLAN) that includes a plurality of transmitters. The switched beam antenna generates a plurality of antenna beams. A method for operating the communications device includes receiving signals from the plurality of transmitters operating within the WLAN, identifying the received signals comprising medium access control (MAC) information, and determining a quality metric for each received signal comprising MAC information. A transmitter is selected based on the quality metrics. The antenna beams are scanned for receiving from the selected transmitter the signals comprising MAC information. A quality metric associated with each scanned antenna beam is determined. One of the scanned antenna beams is then selected for communicating with the selected transmitter based on the quality metrics.
摘要:
A method and apparatus for selecting a beam combination of multiple-input multiple-output (MIMO) antennas are disclosed. A wireless transmit/receive unit (WTRUs) includes a plurality of antennas to generate a plurality of beams for supporting MIMO. At least one antenna is configured to generate multiple beams, such that various beam combinations can be produced and a desired beam combination selected for conducting wireless communication with another WTRU. A quality metric is measured with respect to each or subset of the possible beam combinations. A desired beam combination for MIMO transmission and reception is selected based on the quality metric measurements.
摘要:
A method for steering a smart antenna in a wireless communication system begins by selecting a beam steering criterion. The antenna is switched to one of a plurality of measurement positions and link quality metrics are measured at each measurement position. The steering criterion are optimized based on the measured metrics, and the antenna is steered to the position providing the optimized metrics.
摘要:
A communications device with a switched beam antenna operates in a wireless local area network (WLAN) that includes a plurality of transmitters. The switched beam antenna generates a plurality of antenna beams. A method for operating the communications device includes receiving signals from the plurality of transmitters operating within the WLAN, identifying the received signals comprising medium access control (MAC) information, and determining a quality metric for each received signal comprising MAC information. A transmitter is selected based on the quality metrics. The antenna beams are scanned for receiving from the selected transmitter the signals comprising MAC information. A quality metric associated with each scanned antenna beam is determined. One of the scanned antenna beams is then selected for communicating with the selected transmitter based on the quality metrics.
摘要:
A communications device operates in a wireless local area network (WLAN), and includes a processor operating in accordance with an operating system that includes a standardized set of object identifiers (OIDs) associated therewith. An antenna steering algorithm is executed by the processor for generating a driver query. A driver generates an antenna query in response to the driver query. A smart antenna is driven by the driver and generates antenna beams for receiving signals, and generates metrics based upon the received signals. The smart antenna provides to the driver a metric associated with the antenna query. The driver associates the metric received from the smart antenna with one of the object identifiers from the standardized set of object identifiers, and provides the same to the antenna steering algorithm.