Abstract:
Systems and methods for reducing interference between multiple infra-red depth cameras are described. In an embodiment, the system comprises multiple infra-red sources, each of which projects a structured light pattern into the environment. A controller is used to control the sources in order to reduce the interference caused by overlapping light patterns. Various methods are described including: cycling between the different sources, where the cycle used may be fixed or may change dynamically based on the scene detected using the cameras; setting the wavelength of each source so that overlapping patterns are at different wavelengths; moving source-camera pairs in independent motion patterns; and adjusting the shape of the projected light patterns to minimize overlap. These methods may also be combined in any way. In another embodiment, the system comprises a single source and a mirror system is used to cast the projected structured light pattern around the environment.
Abstract:
Synthesized body images are generated for a machine learning algorithm of a body joint tracking system. Frames from motion capture sequences are retargeted to several different body types, to leverage the motion capture sequences. To avoid providing redundant or similar frames to the machine learning algorithm, and to provide a compact yet highly variegated set of images, dissimilar frames can be identified using a similarity metric. The similarity metric is used to locate frames which are sufficiently distinct, according to a threshold distance. For realism, noise is added to the depth images based on noise sources which a real world depth camera would often experience. Other random variations can be introduced as well. For example, a degree of randomness can be added to retargeting. For each frame, the depth image and a corresponding classification image, with labeled body parts, are provided. 3-D scene elements can also be provided.
Abstract:
Online camera calibration methods have been proposed whereby calibration information is extracted from the images that the system captures during normal operation and is used to continually update system parameters. However, such existing methods do not cope well with structure-poor scenes having little texture and/or 3D structure such as in a home or office environment. By considering camera families (a set of cameras that are manufactured at least partially in a common manner) it is possible to provide calibration methods which are suitable for use with structure-poor scenes. A prior distribution of camera parameters for a family of cameras is estimated and used to obtain accurate calibration results for individual cameras of the camera family even where the calibration is carried out online, in an environment which is structure-poor.
Abstract:
Three-dimensional environment reconstruction is described. In an example, a 3D model of a real-world environment is generated in a 3D volume made up of voxels stored on a memory device. The model is built from data describing a camera location and orientation, and a depth image with pixels indicating a distance from the camera to a point in the environment. A separate execution thread is assigned to each voxel in a plane of the volume. Each thread uses the camera location and orientation to determine a corresponding depth image location for its associated voxel, determines a factor relating to the distance between the associated voxel and the point in the environment at the corresponding location, and updates a stored value at the associated voxel using the factor. Each thread iterates through an equivalent voxel in the remaining planes of the volume, repeating the process to update the stored value.
Abstract:
Systems and methods are disclosed for identifying objects captured by a depth camera by condensing classified image data into centroids of probability that captured objects are correctly identified entities. Output exemplars are processed to detect spatially localized clusters of non-zero probability pixels. For each cluster, a centroid is generated, generally resulting in multiple centroids for each differentiated object. Each centroid may be assigned a confidence value, indicating the likelihood that it corresponds to a true object, based on the size and shape of the cluster, as well as the probabilities of its constituent pixels.
Abstract:
Use of a 3D environment model in gameplay is described. In an embodiment, a mobile depth camera is used to capture a series of depth images as it is moved around and a dense 3D model of the environment is generated from this series of depth images. This dense 3D model is incorporated within an interactive application, such as a game. The mobile depth camera is then placed in a static position for an interactive phase, which in some examples is gameplay, and the system detects motion of a user within a part of the environment from a second series of depth images captured by the camera. This motion provides a user input to the interactive application, such as a game. In further embodiments, automatic recognition and identification of objects within the 3D model may be performed and these identified objects then change the way that the interactive application operates.
Abstract:
Three-dimensional environment reconstruction is described. In an example, a 3D model of a real-world environment is generated in a 3D volume made up of voxels stored on a memory device. The model is built from data describing a camera location and orientation, and a depth image with pixels indicating a distance from the camera to a point in the environment. A separate execution thread is assigned to each voxel in a plane of the volume. Each thread uses the camera location and orientation to determine a corresponding depth image location for its associated voxel, determines a factor relating to the distance between the associated voxel and the point in the environment at the corresponding location, and updates a stored value at the associated voxel using the factor. Each thread iterates through an equivalent voxel in the remaining planes of the volume, repeating the process to update the stored value.
Abstract:
Systems and methods are disclosed for identifying objects captured by a depth camera by condensing classified image data into centroids of probability that captured objects are correctly identified entities. Output exemplars are processed to detect spatially localized clusters of non-zero probability pixels. For each cluster, a centroid is generated, generally resulting in multiple centroids for each differentiated object. Each centroid may be assigned a confidence value, indicating the likelihood that it corresponds to a true object, based on the size and shape of the cluster, as well as the probabilities of its constituent pixels.
Abstract:
Content-based information retrieval is described. In an example, a query item such as an image, document, email or other item is presented and items with similar content are retrieved from a database of items. In an example, each time a query is presented, a classifier is formed based on that query and using a training set of items. For example, the classifier is formed in real-time and is formed in such a way that a limit on the proportion of the items in the database that will be retrieved is set. In an embodiment, the query item is analyzed to identify tokens in that item and subsets of those tokens are selected to form the classifier. For example, the subsets of tokens are combined using Boolean operators in a manner which is efficient for searching on particular types of database.
Abstract:
Predicting joint positions is described, for example, to find joint positions of humans or animals (or parts thereof) in an image to control a computer game or for other applications. In an embodiment image elements of a depth image make joint position votes so that for example, an image element depicting part of a torso may vote for a position of a neck joint, a left knee joint and a right knee joint. A random decision forest may be trained to enable image elements to vote for the positions of one or more joints and the training process may use training images of bodies with specified joint positions. In an example a joint position vote is expressed as a vector representing a distance and a direction of a joint position from an image element making the vote. The random decision forest may be trained using a mixture of objectives.