Reducing Interference Between Multiple Infra-Red Depth Cameras
    11.
    发明申请
    Reducing Interference Between Multiple Infra-Red Depth Cameras 有权
    减少多个红外深度相机之间的干扰

    公开(公告)号:US20120194650A1

    公开(公告)日:2012-08-02

    申请号:US13017518

    申请日:2011-01-31

    Abstract: Systems and methods for reducing interference between multiple infra-red depth cameras are described. In an embodiment, the system comprises multiple infra-red sources, each of which projects a structured light pattern into the environment. A controller is used to control the sources in order to reduce the interference caused by overlapping light patterns. Various methods are described including: cycling between the different sources, where the cycle used may be fixed or may change dynamically based on the scene detected using the cameras; setting the wavelength of each source so that overlapping patterns are at different wavelengths; moving source-camera pairs in independent motion patterns; and adjusting the shape of the projected light patterns to minimize overlap. These methods may also be combined in any way. In another embodiment, the system comprises a single source and a mirror system is used to cast the projected structured light pattern around the environment.

    Abstract translation: 描述了用于减少多个红外深度摄像机之间的干扰的系统和方法。 在一个实施例中,系统包括多个红外源,每个红外源将结构化的光图案投射到环境中。 控制器用于控制源,以减少由重叠的光图案引起的干扰。 描述了各种方法,包括:在不同的源之间循环,其中使用的周期可以是固定的,或者可以基于使用相机检测的场景动态地改变; 设置每个源的波长,使得重叠图案处于不同的波长; 以独立运动模式移动源摄像机对; 并调整投影光图案的形状以最小化重叠。 这些方法也可以以任何方式组合。 在另一个实施例中,系统包括单个源,并且使用镜子系统将投射的结构化光图案围绕环境投射。

    PROXY TRAINING DATA FOR HUMAN BODY TRACKING
    12.
    发明申请
    PROXY TRAINING DATA FOR HUMAN BODY TRACKING 有权
    代码训练数据用于人体跟踪

    公开(公告)号:US20110228976A1

    公开(公告)日:2011-09-22

    申请号:US12727787

    申请日:2010-03-19

    CPC classification number: G06K9/6256 G06K9/00335 G06K9/6206

    Abstract: Synthesized body images are generated for a machine learning algorithm of a body joint tracking system. Frames from motion capture sequences are retargeted to several different body types, to leverage the motion capture sequences. To avoid providing redundant or similar frames to the machine learning algorithm, and to provide a compact yet highly variegated set of images, dissimilar frames can be identified using a similarity metric. The similarity metric is used to locate frames which are sufficiently distinct, according to a threshold distance. For realism, noise is added to the depth images based on noise sources which a real world depth camera would often experience. Other random variations can be introduced as well. For example, a degree of randomness can be added to retargeting. For each frame, the depth image and a corresponding classification image, with labeled body parts, are provided. 3-D scene elements can also be provided.

    Abstract translation: 为身体关节跟踪系统的机器学习算法生成合成身体图像。 来自运动捕捉序列的帧被重定向到几种不同的身体类型,以利用运动捕捉序列。 为了避免向机器学习算法提供冗余或相似的帧,并且为了提供紧凑但高度变化的图像集合,可以使用相似性度量来识别不同的帧。 相似性度量用于根据阈值距离定位足够明显的帧。 对于现实主义,基于真实世界深度相机经常会遇到的噪声源,将噪声添加到深度图像。 也可以引入其他随机变化。 例如,可以添加一定程度的随机性来重定向。 对于每个帧,提供深度图像和具有标记的身体部分的相应分类图像。 也可以提供3-D场景元素。

    Online camera calibration
    13.
    发明授权
    Online camera calibration 有权
    在线相机校准

    公开(公告)号:US07671891B2

    公开(公告)日:2010-03-02

    申请号:US11751932

    申请日:2007-05-22

    CPC classification number: H04N17/002 G06K9/209

    Abstract: Online camera calibration methods have been proposed whereby calibration information is extracted from the images that the system captures during normal operation and is used to continually update system parameters. However, such existing methods do not cope well with structure-poor scenes having little texture and/or 3D structure such as in a home or office environment. By considering camera families (a set of cameras that are manufactured at least partially in a common manner) it is possible to provide calibration methods which are suitable for use with structure-poor scenes. A prior distribution of camera parameters for a family of cameras is estimated and used to obtain accurate calibration results for individual cameras of the camera family even where the calibration is carried out online, in an environment which is structure-poor.

    Abstract translation: 已经提出在线摄像机校准方法,其中从正常操作期间系统捕获的图像中提取校准信息,并用于不断地更新系统参数。 然而,这样的现有方法不能很好地解决具有很少纹理和/或3D结构的结构差的场景,例如在家庭或办公环境中。 通过考虑相机系列(一组至少部分以一般方式制造的相机),可以提供适合与结构不良的场景一起使用的校准方法。 对于一系列相机的相机参数的事先分配被估计并用于获得相机系列的各个照相机的精确校准结果,即使在结构差的环境中在线执行校准。

    Three-dimensional environment reconstruction
    14.
    发明授权
    Three-dimensional environment reconstruction 有权
    三维环境重建

    公开(公告)号:US08587583B2

    公开(公告)日:2013-11-19

    申请号:US13017690

    申请日:2011-01-31

    CPC classification number: G06T17/00 G06T2200/08

    Abstract: Three-dimensional environment reconstruction is described. In an example, a 3D model of a real-world environment is generated in a 3D volume made up of voxels stored on a memory device. The model is built from data describing a camera location and orientation, and a depth image with pixels indicating a distance from the camera to a point in the environment. A separate execution thread is assigned to each voxel in a plane of the volume. Each thread uses the camera location and orientation to determine a corresponding depth image location for its associated voxel, determines a factor relating to the distance between the associated voxel and the point in the environment at the corresponding location, and updates a stored value at the associated voxel using the factor. Each thread iterates through an equivalent voxel in the remaining planes of the volume, repeating the process to update the stored value.

    Abstract translation: 描述了三维环境重建。 在一个示例中,在由存储在存储器件上的体素组成的3D体积中生成真实世界环境的3D模型。 该模型是从描述相机位置和方向的数据构建的,以及具有指示从相机到环境中的点的距离的像素的深度图像。 单独的执行线程被分配给卷的平面中的每个体素。 每个线程使用摄像机位置和方向来确定其相关体素的相应深度图像位置,确定与相关体素和相应位置处的环境中的点之间的距离有关的因子,并更新相关联的体素的存储值 体素使用因子。 每个线程遍历卷的剩余平面中的等效体素,重复更新存储值的过程。

    Multiple centroid condensation of probability distribution clouds
    15.
    发明授权
    Multiple centroid condensation of probability distribution clouds 有权
    概率分布云的多重中心凝聚

    公开(公告)号:US08379919B2

    公开(公告)日:2013-02-19

    申请号:US12770394

    申请日:2010-04-29

    Abstract: Systems and methods are disclosed for identifying objects captured by a depth camera by condensing classified image data into centroids of probability that captured objects are correctly identified entities. Output exemplars are processed to detect spatially localized clusters of non-zero probability pixels. For each cluster, a centroid is generated, generally resulting in multiple centroids for each differentiated object. Each centroid may be assigned a confidence value, indicating the likelihood that it corresponds to a true object, based on the size and shape of the cluster, as well as the probabilities of its constituent pixels.

    Abstract translation: 公开了系统和方法,用于通过将分类的图像数据聚焦成捕获的对象被正确识别的实体的概率的质心来识别由深度相机捕获的对象。 处理输出样本以检测非零概率像素的空间局部集群。 对于每个聚类,生成质心,通常会为每个不同对象产生多个质心。 可以根据群集的大小和形状以及其组成像素的概率为每个质心分配置信度值,指示其对应于真实对象的可能性。

    Three-Dimensional Environment Reconstruction
    17.
    发明申请
    Three-Dimensional Environment Reconstruction 有权
    三维环境重建

    公开(公告)号:US20120194516A1

    公开(公告)日:2012-08-02

    申请号:US13017690

    申请日:2011-01-31

    CPC classification number: G06T17/00 G06T2200/08

    Abstract: Three-dimensional environment reconstruction is described. In an example, a 3D model of a real-world environment is generated in a 3D volume made up of voxels stored on a memory device. The model is built from data describing a camera location and orientation, and a depth image with pixels indicating a distance from the camera to a point in the environment. A separate execution thread is assigned to each voxel in a plane of the volume. Each thread uses the camera location and orientation to determine a corresponding depth image location for its associated voxel, determines a factor relating to the distance between the associated voxel and the point in the environment at the corresponding location, and updates a stored value at the associated voxel using the factor. Each thread iterates through an equivalent voxel in the remaining planes of the volume, repeating the process to update the stored value.

    Abstract translation: 描述了三维环境重建。 在一个示例中,在由存储在存储器件上的体素组成的3D体积中生成真实世界环境的3D模型。 该模型是从描述相机位置和方向的数据构建的,以及具有指示从相机到环境中的点的距离的像素的深度图像。 单独的执行线程被分配给卷的平面中的每个体素。 每个线程使用摄像机位置和方向来确定其相关体素的相应深度图像位置,确定与相关体素和相应位置处的环境中的点之间的距离有关的因子,并更新相关联的体素的存储值 体素使用因素。 每个线程遍历卷的剩余平面中的等效体素,重复更新存储值的过程。

    MULTIPLE CENTROID CONDENSATION OF PROBABILITY DISTRIBUTION CLOUDS
    18.
    发明申请
    MULTIPLE CENTROID CONDENSATION OF PROBABILITY DISTRIBUTION CLOUDS 有权
    概率分布云的多中心简化

    公开(公告)号:US20110268316A1

    公开(公告)日:2011-11-03

    申请号:US12770394

    申请日:2010-04-29

    Abstract: Systems and methods are disclosed for identifying objects captured by a depth camera by condensing classified image data into centroids of probability that captured objects are correctly identified entities. Output exemplars are processed to detect spatially localized clusters of non-zero probability pixels. For each cluster, a centroid is generated, generally resulting in multiple centroids for each differentiated object. Each centroid may be assigned a confidence value, indicating the likelihood that it corresponds to a true object, based on the size and shape of the cluster, as well as the probabilities of its constituent pixels.

    Abstract translation: 公开了系统和方法,用于通过将分类的图像数据聚焦成捕获的对象被正确识别的实体的概率的质心来识别由深度相机捕获的对象。 处理输出样本以检测非零概率像素的空间局部集群。 对于每个聚类,生成质心,通常会为每个不同对象产生多个质心。 可以根据群集的大小和形状以及其组成像素的概率为每个质心分配置信度值,指示其对应于真实对象的可能性。

    Content-Based Information Retrieval
    19.
    发明申请
    Content-Based Information Retrieval 有权
    基于内容的信息检索

    公开(公告)号:US20100257202A1

    公开(公告)日:2010-10-07

    申请号:US12417511

    申请日:2009-04-02

    CPC classification number: G06K9/6257 G06F17/30705 G06F17/3071

    Abstract: Content-based information retrieval is described. In an example, a query item such as an image, document, email or other item is presented and items with similar content are retrieved from a database of items. In an example, each time a query is presented, a classifier is formed based on that query and using a training set of items. For example, the classifier is formed in real-time and is formed in such a way that a limit on the proportion of the items in the database that will be retrieved is set. In an embodiment, the query item is analyzed to identify tokens in that item and subsets of those tokens are selected to form the classifier. For example, the subsets of tokens are combined using Boolean operators in a manner which is efficient for searching on particular types of database.

    Abstract translation: 描述基于内容的信息检索。 在一个示例中,呈现诸如图像,文档,电子邮件或其他项目的查询项目,并且从项目的数据库检索具有相似内容的项目。 在一个示例中,每次呈现查询时,基于该查询并使用项目的训练集形成分类器。 例如,分类器是实时形成的,并且以这样的方式形成:设置将要检索的数据库中的项目的比例的限制。 在一个实施例中,分析查询项目以识别该项目中的令牌,并且选择那些令牌的子集以形成分类器。 例如,使用布尔运算符组合令牌的子集,其方法对于在特定类型的数据库上进行搜索是有效的。

    Predicting joint positions
    20.
    发明授权
    Predicting joint positions 有权
    预测联合职位

    公开(公告)号:US08571263B2

    公开(公告)日:2013-10-29

    申请号:US13050858

    申请日:2011-03-17

    CPC classification number: G06F3/017 G06K9/00362 G06N5/025

    Abstract: Predicting joint positions is described, for example, to find joint positions of humans or animals (or parts thereof) in an image to control a computer game or for other applications. In an embodiment image elements of a depth image make joint position votes so that for example, an image element depicting part of a torso may vote for a position of a neck joint, a left knee joint and a right knee joint. A random decision forest may be trained to enable image elements to vote for the positions of one or more joints and the training process may use training images of bodies with specified joint positions. In an example a joint position vote is expressed as a vector representing a distance and a direction of a joint position from an image element making the vote. The random decision forest may be trained using a mixture of objectives.

    Abstract translation: 例如,描述关节位置的描述是为了在图像中找到人或动物(或其部分)的联合位置,以控制计算机游戏或用于其他应用。 在一个实施例中,深度图像的图像元素进行联合位置投票,使得例如描绘躯干的一部分的图像元素可以投射颈部关节,左膝关节和右膝关节的位置。 可以对随机决策林进行训练,以使图像元素能够对一个或多个关节的位置进行投票,并且训练过程可以使用具有指定关节位置的身体的训练图像。 在一个例子中,联合立场表决被表示为表示从投票的图像元素的联合位置的距离和方向的向量。 可以使用目标混合来训练随机决策林。

Patent Agency Ranking