Abstract:
A video encoding and decoding system that implements an adaptive transfer function method internally within the codec for signal representation. A focus dynamic range representing an effective dynamic range of the human visual system may be dynamically determined for each scene, sequence, frame, or region of input video. The video data may be cropped and quantized into the bit depth of the codec according to a transfer function for encoding within the codec. The transfer function may be the same as the transfer function of the input video data or may be a transfer function internal to the codec. The encoded video data may be decoded and expanded into the dynamic range of display(s). The adaptive transfer function method enables the codec to use fewer bits for the internal representation of the signal while still representing the entire dynamic range of the signal in output.
Abstract:
A video encoding and decoding system that implements an adaptive transfer function method internally within the codec for signal representation. A focus dynamic range representing an effective dynamic range of the human visual system may be dynamically determined for each scene, sequence, frame, or region of input video. The video data may be cropped and quantized into the bit depth of the codec according to a transfer function for encoding within the codec. The transfer function may be the same as the transfer function of the input video data or may be a transfer function internal to the codec. The encoded video data may be decoded and expanded into the dynamic range of display(s). The adaptive transfer function method enables the codec to use fewer bits for the internal representation of the signal while still representing the entire dynamic range of the signal in output.
Abstract:
A video encoding and decoding system that implements an adaptive transfer function method internally within the codec for signal representation. A focus dynamic range representing an effective dynamic range of the human visual system may be dynamically determined for each scene, sequence, frame, or region of input video. The video data may be cropped and quantized into the bit depth of the codec according to a transfer function for encoding within the codec. The transfer function may be the same as the transfer function of the input video data or may be a transfer function internal to the codec. The encoded video data may be decoded and expanded into the dynamic range of display(s). The adaptive transfer function method enables the codec to use fewer bits for the internal representation of the signal while still representing the entire dynamic range of the signal in output.
Abstract:
Video compression and decompression techniques are disclosed that provide improved bandwidth control for video compression and decompression systems. In particular, video coding and decoding techniques quantize input video in multiple dimensions. According to these techniques, pixel residuals may be generated from a comparison of an array of input data to an array of prediction data. The pixel residuals may be quantized in a first dimension. After the quantization, the quantized pixel residuals may be transformed to an array of transform coefficients. The transform coefficients may be quantized in a second dimension and entropy coded. Decoding techniques invert these processes. In still other embodiments, multiple quantizers may be provided upstream of the transform stage, either in parallel or in cascade, which provide greater flexibility to video coders to quantize data in different dimensions in an effort to balance the competing interest in compression efficiency and quality of reconstructed video.
Abstract:
A video encoding and decoding system that implements an adaptive transfer function method internally within the codec for signal representation. A focus dynamic range representing an effective dynamic range of the human visual system may be dynamically determined for each scene, sequence, frame, or region of input video. The video data may be cropped and quantized into the bit depth of the codec according to a transfer function for encoding within the codec. The transfer function may be the same as the transfer function of the input video data or may be a transfer function internal to the codec. The encoded video data may be decoded and expanded into the dynamic range of display(s). The adaptive transfer function method enables the codec to use fewer bits for the internal representation of the signal while still representing the entire dynamic range of the signal in output.
Abstract:
Embodiments of the present invention may provide a video coder. The video coder may include an encoder to perform coding operations on a video signal in a first format to generate coded video data, and a decoder to decode the coded video data. The video coder may also include an inverse format converter to convert the decoded video data to second format that is different than the first format and an estimator to generate a distortion metric using the decoded video data in the second format and the video signal in the second format. The encoder may adjust the coding operations based on the distortion metric.
Abstract:
Embodiments of the present invention may provide a video coder. The video coder may include an encoder to perform coding operations on a video signal in a first format to generate coded video data, and a decoder to decode the coded video data. The video coder may also include an inverse format converter to convert the decoded video data to second format that is different than the first format and an estimator to generate a distortion metric using the decoded video data in the second format and the video signal in the second format. The encoder may adjust the coding operations based on the distortion metric.