Abstract:
In an example method, a mobile device connects a voice call for a user. The voice call causes one or more radio frequency transmitters of the mobile device to transmit radio waves at a first power level. Motion data describing movement of the mobile device is obtained, and the orientation of the mobile device is determined based on the motion data. A determination whether the mobile device is on the user's body or on an inanimate object is made based on the orientation of the mobile device over the period of time. The transmit power level is adjusted based on the determination.
Abstract:
A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
Abstract:
An electronic device may include a first set of radios subject to a specific absorption rate (SAR) limit and a second set of radios subject to a maximum permissible exposure (MPE) limit over an averaging period. Control circuitry may dynamically adjust radio-frequency (RF) exposure metric budgets provided to the radios over the averaging period, based on feedback reports from the radios identifying the amount of SAR and MPE consumed by the radios during different subperiods of the averaging period. The control circuitry may distribute and adjust SAR budgets and MPE budgets across the radios based on the feedback reports, distribution policies, radio statuses, transmit activity factors, and/or usage ratios associated with the radios. This may provide efficient utilization of the total available SAR and MPE budget, thereby leading to increased uplink coverage and throughput relative to scenarios where the SAR and MPE budgets remain static.
Abstract:
A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
Abstract:
A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
Abstract:
An electronic device may include a radio that generates a first maximum power based on a radio-frequency exposure (RFE) budget. The radio may transmit signals subject to the first maximum power during a subperiod of an averaging period and may generate an instantaneous RFE metric value based on an antenna coefficient and the conducted transmit power of the antenna during the subperiod. The radio may generate a consumed RFE value by averaging the instantaneous RFE metric value with previous instantaneous RFE values from the averaging period, may generate a remaining budget based on the consumed RFE value, may generate a second maximum transmit power based on the remaining budget, and may transmit signals during a subsequent subperiod subject to the second maximum power. Time-averaging the RFE metric may serve to optimize performance of the radio relative to scenarios where the radio performs time-averaging of conducted TX power.
Abstract:
A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
Abstract:
In an example method, a mobile device connects a voice call for a user. The voice call causes one or more radio frequency transmitters of the mobile device to transmit radio waves at a first power level. Motion data describing movement of the mobile device is obtained, and the orientation of the mobile device is determined based on the motion data. A determination whether the mobile device is on the user's body or on an inanimate object is made based on the orientation of the mobile device over the period of time. The transmit power level is adjusted based on the determination.
Abstract:
An electronic device may be provided with wireless circuitry for transmitting and receiving wireless signals. Control circuitry may be used to adjust transmit power levels for the wireless signals and other settings for the wireless circuitry. The electronic device may be operated in conjunction with an external accessory. The accessory may be equipment that includes a dock connector, a case to enclose the electronic device, equipment that is coupled to the electronic device using a cable, or other external electronic equipment. An identifier may be stored in the accessory. The impact of the accessory on the wireless performance of the electronic device may be characterized and associated with the identifier. During operation of the electronic device, the electronic device may adjust transmit power levels and other settings based on the identifier of the accessory and based on sensor data, user input, and other information.
Abstract:
An electronic device may be provided with wireless circuitry for transmitting and receiving wireless signals. Control circuitry may be used to adjust transmit power levels for the wireless signals and other settings for the wireless circuitry. The electronic device may be operated in conjunction with an external accessory. The accessory may be equipment that includes a dock connector, a case to enclose the electronic device, equipment that is coupled to the electronic device using a cable, or other external electronic equipment. An identifier may be stored in the accessory. The impact of the accessory on the wireless performance of the electronic device may be characterized and associated with the identifier. During operation of the electronic device, the electronic device may adjust transmit power levels and other settings based on the identifier of the accessory and based on sensor data, user input, and other information.