Abstract:
Anodic oxide coatings and methods for forming anodic oxide coatings are disclosed. In some embodiments, the anodic oxide coatings are multilayered coatings that include at least two anodic oxide layers formed using two separate anodizing processes. The anodic oxide coating includes at least an adhesion-promoting or color-controlling anodic oxide layer adjacent the substrate. The adhesion-promoting anodic oxide layer is formed using an anodizing process that involves using an electrolyte that prevents formation of delaminating compounds at an interface between the adhesion-promoting anodic oxide layer and the substrate, thereby securing the anodic oxide coating to the substrate. In some cases, the electrolyte includes an organic acid, such as oxalic acid. The anodic oxide coating can also include a cosmetic anodic oxide layer having an exposed surface corresponding to an external surface of the anodic oxide coating. Cosmetic anodic oxide layers can be designed to have a desired appearance or tactile quality.
Abstract:
Sealed anodic coatings that are resistant to leaching of nickel and nickel-containing products and methods for forming the same are described. Methods involve post-sealing thermal processes to remove at least some of the leachable nickel from the sealed anodic coatings. In some embodiments, the post-sealing thermal processes involve immersing the sealed anodic coating within a heated solution so as to promote diffusion of the leachable nickel out of the sealed anodic coatings and into the heated solution. The resultant sealed anodic coating is pre-leached of nickel and is therefore well suited for many consumer product applications. In some embodiments, a post-sealing thermal process is used to further hydrate and seal the sealed anodic coating, thereby repairing structural defects within the sealed anodic coating.
Abstract:
Porous metal oxide layers having a color due to visible light interference effects are disclosed. In particular embodiments the porous metal oxide layers are formed using an anodizing processes, which includes a porous metal oxide layer forming process and a barrier layer thickening process. The barrier layer thickening process increases a thickness of a barrier layer within the porous metal oxide layer to a thickness sufficient to and cause incident visible light waves to be reflected in the form of a new visible light waves, thereby imparting a color to the porous metal oxide layer. Methods for tuning the color of the porous metal oxide layer and for color matching surfaces of different types of metal substrates are described.