Abstract:
An apparatus for deploying stowed control surfaces of a projectile is disclosed. The apparatus for deploying stowed control surfaces of a projectile includes a first and second hot gas generators, a first and second gas chambers, a piston wedge, a piston and a barrel. Initially, the first hot gas generator discharges a surge of hot gas into the first gas chamber. In response to the surge of hot gas being discharged into the first gas generator, the piston wedge displaces at least one of the control surfaces to break an environmental seal covering the projectile. After a predetermined amount of time has lapsed, the second hot gas generator discharges a surge of hot gas into the second gas chamber. The surge of hot gas displaces the piston and barrel for deploying the control surfaces completely.
Abstract:
[A system and method for dynamic autopilot control comprising providing input to a guidance and control autopilot comprising Mach and dynamic pressure; tailoring parameters of the autopilot, the parameters comprising: roll gain; a pitch/yaw gain; a pitch/yaw loop compensator frequency; a guidance filter bandwidth; a guidance filter lead compensator frequency; and a navigation gain.
Abstract:
A guidance system for deployment on-board a projectile includes a laser-seeking detector, an imaging device, and a control module. The laser-seeking detector is designed to detect the position of the projectile with reference to a laser spot on a target. The imaging device is designed to capture one or more images in front of the projectile. The control module is designed to control a flight direction of the projectile based on input received from the laser-seeking detector in a first mode, control the flight direction of the projectile based on input received from the imaging device in a second mode, and switch between the first mode and the second mode while the projectile is in flight towards the target. Both guidance technologies are leveraged to develop an improved guidance technique that provides highly accurate targeting and allows for a faster rate of fire to deal with multiple targets.
Abstract:
Techniques are provided for determination of a guided-munition orientation during flight based on lateral acceleration, velocity, and turn rate of the guided-munition. A methodology implementing the techniques, according to an embodiment, includes obtaining a lateral acceleration vector measurement and a velocity of the guided-munition, and calculating a ratio of the two, to generate an estimated lateral turn vector of the guided-munition. The method also includes integrating the estimated lateral turn vector, over a period of time associated with flight of the guided-munition, to generate a first type of predicted attitude change. The method further includes obtaining and integrating a lateral turn rate vector measurement of the guided-munition, over the period of time associated with flight of the guided-munition, to generate a second type of predicted attitude change. The method further includes calculating a gravity direction vector based on a difference between the first and second types of predicted attitude change.
Abstract:
A device, system, and method for shaping the trajectory of a projectile employing a Gravity bias, Gbias. The system includes a seeker, a guidance filter, a pitch rate filter, an actuator, pitch/yaw/roll coupled aerodynamics, and lateral rate sensors. It receives roll orientation input to a guidance and control autopilot; it applies Additional Gbias to that produced by the null rate command to the lateral control loops of the guidance and control autopilot device. The lateral rate command is equal to the desired Additional Gbias divided by an estimate of the projectile velocity. The Additional Gbias is translated to a rate command and incorporated into guidance loop commands to boost an Inherent Gbias to shape the trajectory of the projectile to the target.
Abstract:
A device, system, and method for shaping the trajectory of a projectile employing a Gravity bias, Gbias. The system includes a seeker, a guidance filter, a pitch rate filter, an actuator, pitch/yaw/roll coupled aerodynamics, and lateral rate sensors. It receives roll orientation input to a guidance and control autopilot; it applies Additional Gbias to that produced by the null rate command to the lateral control loops of the guidance and control autopilot device. The lateral rate command is equal to the desired Additional Gbias divided by an estimate of the projectile velocity. The Additional Gbias is translated to a rate command and incorporated into guidance loop commands to boost an Inherent Gbias to shape the trajectory of the projectile to the target.
Abstract:
Techniques are provided for estimating the direction of a laser source under non-uniform illumination conditions such as laser speckle. An example system may include a detector array comprising sensors configured to detect the amplitude of the received laser signal. The sensors are disposed on the array at unique orientation angles relative to each other. The sensor size is selected based on the speckle pattern of the laser signal such that the sensors are small enough to be uniformly illuminated by the laser signal in the presence of speckle. The system also includes an amplitude ratio calculation circuit configured to calculate ratios of the amplitudes between each of two sensors of one or more pairs of sensors. The system further includes an angle of arrival calculation circuit configured to estimate the direction of the source of the laser signal based on the calculated ratios and the orientation angles of the sensors.
Abstract:
Techniques are provided for automated determination of a rocket configuration based on acceleration during rocket motor burn-out and temperature. The rocket configuration is associated with a class of warhead affixed to the rocket. A methodology implementing the techniques according to an embodiment includes measuring the acceleration of the rocket over a period of time associated with the flight of the rocket. The method also includes calculating an acceleration difference between the measured acceleration associated with the start of rocket motor burn-out and the measured acceleration associated with the end of rocket motor burn-out. The method further includes measuring an internal temperature of the rocket and selecting a delta acceleration threshold based on the measured temperature. The method further includes comparing the calculated acceleration difference to the selected delta acceleration threshold, to estimate the rocket configuration. The estimated rocket configuration is used by guidance and control circuitry to select autopilot parameters.
Abstract:
Techniques are provided for estimating the direction of a laser source under non-uniform illumination conditions such as laser speckle. An example system may include a detector array comprising sensors configured to detect the amplitude of the received laser signal. The sensors are disposed on the array at unique orientation angles relative to each other. The sensor size is selected based on the speckle pattern of the laser signal such that the sensors are small enough to be uniformly illuminated by the laser signal in the presence of speckle. The system also includes an amplitude ratio calculation circuit configured to calculate ratios of the amplitudes between each of two sensors of one or more pairs of sensors. The system further includes an angle of arrival calculation circuit configured to estimate the direction of the source of the laser signal based on the calculated ratios and the orientation angles of the sensors.