Abstract:
An evaporator includes at least one feeding member and a heating member. Each feeding member is configured to transfer a source material in a transfer speed that is adjustable, and the heating member is configured to heat the source material transferred by the feeding member for evaporation to thereby generate a source material vapor. An evaporation coating apparatus further includes a coating chamber, an object holder, and a controller configured to control the transfer speed, wherein the evaporator and the object holder are both disposed inside the coating chamber, the object holder is configured to provide a platform for placing an object to be coated thereon, and the coating chamber is configured to provide an environment for the source material vapor vented out from the evaporator to attach to the object to thereby form a film of the source material onto the object.
Abstract:
The disclosure provides an ink jet printing apparatus. The ink jet printing apparatus includes a support base configured to support the to-be-processed substrate; and a solvent adjusting mechanism, configured to supply a dummy region of the to-be-processed substrate on the support base with a first solvent that is same as a solvent in an ink and adjust a solvent atmosphere of the dummy region of the to-be-processed substrate on the support base, to make the solvent atmosphere of the dummy region of the to-be-processed substrate and that of a center region of the to-be-processed substrate reach a predetermined condition. The solvent adjusting mechanism is arranged on the support base.
Abstract:
Provided are a display panel and a method for manufacturing the same, and a display device. The display panel includes: a first base substrate; color control units on a side of light-emitting units away from the first base substrate, the color control units correspond to the light-emitting units one to one; at least part of the light-emitting units are each provided with a diaphragm structure, the diaphragm structures are located between the light-emitting units and the color control units, each diaphragm structure is provided with a light passing portion therein; each diaphragm structure is configured to block light from the light-emitting unit and directed to the color control units not corresponding to the light-emitting unit, and allow part of light from the light-emitting unit and directed to the color control unit corresponding to the light-emitting unit to be transmitted at the light passing portion corresponding to the light-emitting unit.
Abstract:
A sub pixel includes an active layer, a gate insulating layer, a gate, an interlayer insulating layer, a source-drain layer, a first planarization layer, and an anode. The anode includes: a reflection layer located on the side of the first planarization layer away from the base substrate and including reflection parts arranged at intervals; a second planarization located on the side of the reflection layer away from the base substrate and covers the reflection layer and the base substrate; and a first transparent electrode layer located on the side of the second planarization layer away from the base substrate and includes first electrodes arranged at intervals. There is at least an overlapping area between orthographic projections of the first electrodes on the base substrate and orthographic projections of the reflection parts on the base substrate in a same sub-pixel.
Abstract:
The present disclosure relates to the field of display technologies, and especially discloses a backlight device and a method for manufacturing the same. The backlight device includes a backlight source, a light guide plate, a reflective layer, an optical adhesive layer and an outcoupling structure. Specifically, in the backlight device, the reflective layer and the light guide plate are located on opposite sides of the backlight source respectively.
Abstract:
The present disclosure provides a pixel print structure, a manufacturing method thereof, a display device, and an inkjet printing method. The pixel print structure comprises a substrate, a first side wall and a second side wall located on the substrate, and an intermediate portion located between the first side wall and the second side wall, wherein the first side wall and the intermediate portion define a first area, and the second side wall and the intermediate portion define a second area.
Abstract:
An ink measuring system and a printing device including the ink measuring system. The ink measuring system includes: a measuring cavity body provided with an opening, where the measuring cavity body includes a side wall and a bottom, and the bottom and the opening are oppositely disposed; at least an air exhaust pipeline penetrating through the bottom; and a filter core disposed inside the measuring cavity body. The printing device further includes a printing system having a bubble discharging function. The printing system includes: a liquid storage box; a sprayer; a liquid inlet pipeline connected to the liquid storage box and the sprayer; a bubble detecting device disposed outside a bubble detecting point of the liquid inlet pipeline; a sprayer valve disposed in the liquid inlet pipeline; a bubble discharging pipeline connected with the liquid inlet pipeline; and a bubble discharging valve disposed in the bubble discharging pipeline.
Abstract:
The present disclosure provides a calibration method and a calibration device for a volume of an ink droplet and a printing apparatus including the calibration device. The calibration method for a volume of an ink droplet comprises: calculating a first volume of a single ink droplet based on a mass and a density of an ink droplet; calibrating a measurement parameter used in an optical measurement approach based on the first volume; and acquiring a second volume of a single ink droplet using the optical measurement approach based on the calibrated measurement parameter.
Abstract:
Disclosed are an ink-jet printing head, an ink-jet printing method using the ink-jet printing head and an ink-jet printing device including the ink-jet printing head. The ink-jet printing head includes a chamber for accommodating ink and nozzle sets provided on a sidewall of the chamber where ink is sprayed. The nozzle sets are used for ink-jet printing on pixels at different positions, respectively. Each of nozzle sets includes sub-nozzles and the sub-nozzles in each nozzle set can spray different volumes of ink. In the printing head, by providing sub-nozzles having different ink spraying volumes in each nozzle set, ink droplets having desirable volumes can be sprayed from nozzle sets such that total volumes of ink droplets sprayed at different positions from nozzle sets could be more accurate. Therefore, a thickness of a film layer formed by ink-jet printing can be flexibly controlled and adjusted, while having a significantly improved accuracy.
Abstract:
The present disclosure provides an evaporation source and an evaporation device. The evaporation source includes a heat source structure and an evaporation container for accommodating a to-be-evaporated material. The heat source structure includes a heat source and a thermal conductor. The thermal conductor is in contact with the evaporation container, and the heat source is at the thermal conductor and around the evaporation container.