Abstract:
A flexible display device and a mobile terminal including the same are provided, whose portability is improved, and which enable diverse choices of the screen sizes. The flexible display device includes a receptacle mechanism and a flexible display screen, wherein the receptacle mechanism includes a first end cap and a second end cap opposed to each other, a spool pivotally mounted on the first end cap and the second end cap, a ratchet fixedly connected to the spool, a pawl hinged to the first end cap, a pretension spring abutting the first end cap and the pawl respectively, and a reset spring fixedly connected to the spool and the second end cap respectively. The flexible display screen includes a first lateral edge and a second lateral edge opposed to each other, and the first lateral edge is fixedly connected to the spool.
Abstract:
The present disclosure provides 3D glasses, a 3D display system and a 3D display method. The 3D display system of the present disclosure includes a 3D display device and 3D glasses. The 3D glasses include: a 3D image presenting module configured to present a 3D image provided by a 3D display device to a user, a gesture information acquiring module configured to acquire gesture information of the user and supply the gesture information to a gesture information processing module, the gesture information processing module configured to generate processing information according to the gesture information and supply the processing information to an information transmitting module, and the information transmitting module configured to transmit the processing information to the 3D display device.
Abstract:
The present invention provides a polarity inversion driving method for a liquid crystal display panel. The polarity inversion driving method comprises a step of performing polarity inversion on groups of pixel units according to a preset period, wherein each group of pixel units comprises rows of pixel units sequentially arranged in a same column, and a gate on-state duration of the first row of pixel unit in each group of pixel units is longer than the gate on-state duration of the remaining rows of pixel units in the group of pixel units. Correspondingly, the present invention further provides a polarity inversion driving device for a liquid crystal display panel. According to the present invention, when N-dot inversion driving is performed on the liquid crystal panel, charging times of respective rows of pixel units in each group of pixel units are closer.
Abstract:
Disclosed are a brightness control apparatus and method, and a display apparatus. The brightness control apparatus includes an optical detection circuit and an integrated circuit chip connected with the optical detection circuit. The optical detection circuit includes at least one transistor, configured to detect a light intensity of light to be detected corresponding to an environment where a display panel is located, and generate an electrical signal corresponding to the light intensity of the light to be detected.
Abstract:
An image processing method based on a dither algorithm and a display device are disclosed. The method includes: obtaining a to-be-displayed image, and determining a first region and a second region of the to-be-displayed image, where the first region and the second region are determined according to a coverage range of a visual field of a user on a display screen; determining a first dither algorithm corresponding to the first region and a second dither algorithm corresponding to the second region, where parameter matrices the first dither algorithm and the second dither algorithm are different; and obtaining a rendered image of the to-be-displayed image by rendering the first region according to the first dither algorithm and rendering the second region according to the second dither algorithm, and displaying the rendered image on the display screen.
Abstract:
A display substrate includes a base substrate, a plurality of photosensitive transistor units, a plurality of photosensitive ESD protection units, and at least one common signal line. The base substrate includes a display region, a peripheral region located at a periphery of the display region, and a binding region located at a side of the display region. The plurality of photosensitive transistor units, the plurality of photosensitive ESD protection units and the at least one common signal line are located in the peripheral region. The plurality of photosensitive transistor units is connected with binding pins in the binding region through a plurality of signal lines. At least one photosensitive ESD protection unit is connected with, and located between, at least one signal line and the common signal line.
Abstract:
A display panel, a gate drive circuit and a driving method thereof. The gate drive circuit includes drive units. A first cascaded input end OUT(n−1) of a first shift register (100) of each of the drive units is connected to a different start signal end STV; a plurality of drive units in the drive units include a reset control sub-circuit (9), where the reset control sub-circuit (9) is connected with a second cascaded input end OUT(n+1) of a last shift register (100) and one or more start signal ends STV, and is configured to control an electric potential of the second cascaded input end OUT(n−1) according to an electric potential of the one or more start signal ends STV.
Abstract:
The present disclosure provides an image compression method, including steps of: acquiring a human-eye fixation point on an original image, and determining a fixation region and a non-fixation region of the original image according to the human-eye fixation point; and compressing the non-fixation region, and generating a compressed image according to the fixation region and the compressed non-fixation region. The present disclosure also provides an image display method, an image compression apparatus, an image display apparatus, and a computer readable medium.
Abstract:
A driving chip for a display panel is provided. The display panel includes a plurality of subpixels arranged at a display region, the display region is provided with a boundary extended by a non-straight line, and the plurality of subpixels includes first subpixels separated from the boundary by a distance substantially smaller than a predetermined threshold and second subpixels other than the first subpixels. The driving chip includes: an adjustment circuit configured to, when the display panel is in a predetermined display mode, adjust a first grayscale value of at least a part of the first subpixels in original image data into a second grayscale value substantially smaller than the first grayscale value; a driving circuit configured to drive the at least a part of first subpixels in accordance with the second grayscale value to display an image.
Abstract:
Disclosed are a backlight structure and a display apparatus. The backlight structure includes a sub-backlight unit and a side-type main backlight module. The main backlight module includes a main reflector plate. The main reflector plate is provided with at least one transmission region. The sub-backlight unit is provided at a side of the main backlight module where the main reflector plate is provided. A light exiting side of the sub-backlight unit is provided in correspondence with the transmission region such that light emitted from the sub-backlight unit transmits through the transmission region.