Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a medical device for modulating nerves. The medical device may include an elongate shaft having a distal region. A balloon may be coupled to the distal region. An electrode may be disposed within the balloon. A virtual electrode may be defined on the balloon. The virtual electrode may include a conductive region having an edge and a peripheral region disposed at least partially along the edge of the conductive region. The peripheral region may be configured to dissipate forces, electrical current, or both accumulating along the edge of the conductive region.
Abstract:
An expandable medical balloon for transmitting radiofrequency energy, the medical balloon comprising at least one polymeric electrically-insulating layer and at least one polymeric electrically-conductive layer, wherein at least portions of the polymeric electrically-insulating layer are moveable relative to the polymeric electrically-conductive in said at least one pressurizable expanded state.
Abstract:
The disclosure pertains to an intravascular catheter for nerve modulation, comprising an elongate member having a proximal end and a distal end, a balloon having a lumen and a balloon wall, the balloon wall comprising RF permeable sections and non-electrically conductive sections, an electrode disposed within the balloon and extending distally to the furthest distal RF permeable section. The RF permeable sections may comprise a plurality of RF permeable windows, each window having a greater circumferential dimension than an axial dimension. The intravascular system is suited for modulation of renal nerves.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a catheter shaft. An expandable member may be coupled to the catheter shaft. The expandable member may be capable of shifting between a folded configuration and an expanded configuration. A plurality of flexible elements may be attached to the expandable member, with a plurality of electrode assemblies disposed on the flexible elements. The flexible elements may have a grooved substrate.
Abstract:
The disclosure pertains to an intravascular catheter for nerve modulation, comprising an elongate member having a proximal end and a distal end, a balloon having a lumen and a balloon wall, the balloon wall comprising RF permeable sections and non-electrically conductive sections, an electrode disposed within the balloon and extending distally to the furthest distal RF permeable section. The RF permeable sections may comprise a plurality of RF permeable windows, each window having a greater circumferential dimension than an axial dimension. The intravascular system is suited for modulation of renal nerves.
Abstract:
Medical devices and methods for forming the medical devices are disclosed in the present application. In one illustrative example, a medical device may comprise a catheter shaft extending from a proximal end to a distal end and may include a plurality of lumens extending through at least a portion of the catheter shaft. In some examples, the medical device may further include a balloon member disposed proximate the distal end of the catheter shaft, and the catheter shaft may comprise a frangible portion disposed proximate the distal end of the catheter shaft.
Abstract:
An expandable medical balloon for transmitting radiofrequency energy, the medical balloon comprising at least one polymeric electrically-insulating layer and at least one polymeric electrically-conductive layer, wherein at least portions of the polymeric electrically-insulating layer are moveable relative to the polymeric electrically-conductive in said at least one pressurizable expanded state.
Abstract:
Composite fiber reinforced balloons for medical devices prepared by applying a web of fibers to the exterior of a preformed underlying balloon and encasing the web with a matrix material to form a composite balloon. The fiber web is applied to at least the cone portion of the underlying balloon form. Either the cone portion of the underlying balloon form, or the web fibers applied to said cone portion, or both, have a friction-enhancing material coated thereon.