Abstract:
A communication device, such as a smart phone, receives operational parameters from a network controller. The operational parameters may include, as examples, bandwidth allocation, center frequency, and receive/transmit band assignments. The operational parameters (e.g., bandwidth allocation) may change on a subframe by subframe basis. In response to the operational parameters, the communication device determines a new configuration for an envelope tracking (ET) power supply. The communication device modifies the ET power supply to implement the new configuration. The new configuration may be chosen to adapt the ET power supply to meet the demands of the operation parameters, without excess power consumption.
Abstract:
An envelope tracking circuit for a transmit and receive path for a telecommunications device includes a filter to reduce the bandwidth of the transmit signal. The envelope of the filtered signal having the lower bandwidth is used to dynamically modulates the power amplifier voltage supply signal. The filter depends on current instantaneous values and also depends in a nonlinear way on instantaneous past and future values of the envelope tracking signal. The filter may be symmetric about peaks of the transmitted signal.
Abstract:
A wireless device performs antenna tuner updates at times that minimize adverse effects on transmit and receive channels of the wireless device. The wireless device includes an antenna, an RF front end, an antenna tuner circuit and a processing module. The antenna tuner circuit is configured to substantially match a source impedance of the RF front end to a load impedance of the antenna based on a control signal. The processing module is configured to identify an update time for providing the control signal to the antenna tuner circuit that minimizes adverse effects on at least one of the transmit channel and the receive channel.
Abstract:
A communication device, such as a smart phone, includes an envelope tracking power supply that provides a voltage supply signal for a power amplifier. The envelope tracking signal input to the envelope tracking power supply arises from application of a shaping table on a desired transmit signal. The shaping table implements non-uniform gain compression across a range of output powers, and in particular may aggressively compress the power amplifier for low output powers, and less aggressively compress the power amplifier at high output powers. The non-uniform gain implemented via the shaping table may provide significant power savings, while still allowing the transmitter to meet spectral mask requirements.
Abstract:
In response to changing power output requirements of a UE, an envelope tracking (ET) path of a transmission chain changes power modes. When the UE output power is below a threshold, the ET path may switch an ET power supply to a low power mode. With the switch to low power mode, the UE may also set one or more of the other components in the ET path to a low power mode of operation to save additional power.