Abstract:
A system and method is provided for operating a node in an optical Ethernet network system, comprising: generating optical signals of at least one wavelength corresponding to the node; transmitting the optical signals on each of the first and second optical fiber paths; receiving optical signals of the at least one wavelength, either directly or indirectly, from the first and second optical fiber paths; and selectively choosing signals from, either directly or indirectly, either the first or second optical fiber paths depending on the optical signals received from the first or second optical fiber path.
Abstract:
A system and method of providing a dynamic optical network topology according to topology determinations made by a network control is disclosed. The system and method includes optical ports on an optical circuit switch system operably connected to a plurality of server groups, and optical ports on the optical circuit switch system operably connected to a plurality of packet processing nodes. The system and method also includes at least one memory and at least one processor to execute network control software to receive input comprising a bandwidth request, determine an output comprising a preferred optical link topology for the optical circuit switch system based on the received input, convert the optical link topology for the optical circuit switch system into optical circuit switch port mapping, and send the optical circuit switch port mapping to the optical circuit switch system and to the packet processing nodes.
Abstract:
A packet switch/router including a first stage switch fabric receiving an electrical signal, a mid-stage buffer receiving and storing the electrical signal from the first stage switch fabric, and a second stage switch fabric receiving the electrical signal from the mid-stage buffer. Each switch fabric includes N layers of N×N arrayed waveguide gratings (AWGs), and each AWG has ingress ports and egress ports. A wavelength tunable device, such as a tunable laser, communicates with a source ingress port of an AWG and converts the received electrical signal to an optical signal having a wavelength selected for routing a packet from the source ingress port to a target egress port of the arrayed waveguide grating. A photoreceiver, such as a burst-mode photoreceiver, receives the propagated optical signal from the target egress port and converts the optical signal to the electrical signal.
Abstract:
Aspects of the invention provide transmitters and receivers for managing multiple optical signals. High order modulation, such as phase and/or amplitude modulation, is used to achieve multiple bits per symbol by transporting multiple asynchronous data streams in an optical transport system. One or more supplemental multiplexing techniques such as time division multiplexing, polarization multiplexing and sub-carrier multiplexing may be used in conjunction with the high order modulation processing. This may be done in various combinations to realize a highly spectrally efficient multi-data stream transport mechanism. The system receives a number of asynchronous signals which are unframed and synchronized, and then reframed and tagged prior to the high order modulation. Differential encoding may also be performed. Upon reception of the multiplexed optical signal, the receiver circuitry may employ either direct detection without a local oscillator or coherent detection with a local oscillator.
Abstract:
A method of controlling phase alignment in a modulator of a transmitter in an optical communications system uses a narrowband optical filter to monitor changes in power spectral density of a modulated output at and around the optical carrier frequency. In one embodiment, a method controls alignment of a carrier-suppressed-return-to-zero (CSRZ) pulse train in accordance with changes in the power spectral density of the CSRZ modulated optical signal at and around the optical carrier frequency and generates phase adjustment control signals by executing a phase-control loop to maintain the power spectral density of the CSRZ modulated output at the optical carrier frequency at a desired level.