摘要:
A system and method for frequency diversity uses interleaving in a wireless communication system utilizing orthogonal frequency division multiplexing (OFDM) with various FFT sizes. Subcarriers of one or more interlaces are interleaved in a bit reversal fashion and the one or more interlaces are interleaved.
摘要:
Apparatus and methods for use in a wireless communication system are disclosed for recovery of timing tracking in a device, such as a wireless transceiver, after decoding errors occur due to incorrect timing tracking. In particular, the disclosed methods and apparatus recover timing tracking by monitoring a decoded signal in the transceiver for decoding errors occurring during a first frame, determining whether a number of decoding errors is greater than a predetermined amount, reacquiring a first pilot channel at a start of a subsequently received second frame when the number of decoding errors is determined to be greater than the predetermined amount, and resetting timing tracking of the transceiver based on the reacquired first pilot channel.
摘要:
In an OFDM system, a transmitter broadcasts a first TDM pilot on a first set of subbands followed by a second TDM pilot on a second set of subbands in each frame. The subbands in each set are selected from among N total subbands such that (1) an OFDM symbol for the first TDM pilot contains at least S1 identical pilot-1 sequences of length L1 and (2) an OFDM symbol for the second TDM pilot contains at least S2 identical pilot-2 sequences of length L2, where L2>L1, S1·L1=N, and S2·L2=N. The transmitter may also broadcast an FDM pilot. A receiver processes the first TDM pilot to obtain frame timing (e.g., by performing correlation between different pilot-1 sequences) and further processes the second TDM pilot to obtain symbol timing (e.g., by detecting for the start of a channel impulse response estimate derived from the second TDM pilot).
摘要:
In an OFDM system, a transmitter broadcasts a first TDM pilot on a first set of subbands followed by a second TDM pilot on a second set of subbands in each frame. The subbands in each set are selected from among N total subbands such that (1) an OFDM symbol for the first TDM pilot contains at least S1 identical pilot-1 sequences of length L1 and (2) an OFDM symbol for the second TDM pilot contains at least S2 identical pilot-2 sequences of length L2, where L2>L1, S1·L1=N, and S2·L2=N. The transmitter may also broadcast an FDM pilot. A receiver processes the first TDM pilot to obtain frame timing (e.g., by performing correlation between different pilot-1 sequences) and further processes the second TDM pilot to obtain symbol timing (e.g., by detecting for the start of a channel impulse response estimate derived from the second TDM pilot).
摘要:
The embodiments utilize OFDM symbols to communicate network IDs. The IDs are encoded into symbols utilizing the network IDs as seeds to scramble respective pilots that are then transmitted by utilizing the symbols. The pilots can be structured into a single OFDM symbol and/or multiple OFDM symbols. The single symbol structure for transmitting the network IDs is independent of the number of network ID bits and minimizes frequency offset and Doppler effects. The multiple symbol structure allows a much coarser timing accuracy to be employed at the expense of transmitting additional symbols. Several embodiments employ a search function to find possible network ID candidates from a transmitted symbol and a selection function to find an optimum candidate from a network ID candidate list.
摘要:
The embodiments utilize OFDM symbols to communicate network IDs. The IDs are encoded into symbols utilizing the network IDs as seeds to scramble respective pilots that are then transmitted by utilizing the symbols. The pilots can be structured into a single OFDM symbol and/or multiple OFDM symbols. The single symbol structure for transmitting the network IDs is independent of the number of network ID bits and minimizes frequency offset and Doppler effects. The multiple symbol structure allows a much coarser timing accuracy to be employed at the expense of transmitting additional symbols. Several embodiments employ a search function to find possible network ID candidates from a transmitted symbol and a selection function to find an optimum candidate from a network ID candidate list.
摘要:
The embodiments utilize OFDM symbols to communicate network IDs. The IDs are encoded into symbols utilizing the network IDs as seeds to scramble respective pilots that are then transmitted by utilizing the symbols. The pilots can be structured into a single OFDM symbol and/or multiple OFDM symbols. The single symbol structure for transmitting the network IDs is independent of the number of network ID bits and minimizes frequency offset and Doppler effects. The multiple symbol structure allows a much coarser timing accuracy to be employed at the expense of transmitting additional symbols. Several embodiments employ a search function to find possible network ID candidates from a transmitted symbol and a selection function to find an optimum candidate from a network ID candidate list.
摘要:
To broadcast different types of transmission having different tiers of coverage in a wireless broadcast network, each base station processes data for a wide-area transmission in accordance with a first mode (or coding and modulation scheme) to generate data symbols for the wide-area transmission and processes data for a local transmission in accordance with a second mode to generate data symbols for the local transmission. The first and second modes are selected based on the desired coverage for wide-area and local transmissions, respectively. The base station also generates pilots and overhead information for local and wide-area transmissions. The data, pilots, and overhead information for local and wide-area transmissions are multiplexed onto their transmission spans, which may be different sets of frequency subbands, different time segments, or different groups of subbands in different time segments. More than two different types of transmission may also be multiplexed and broadcast.
摘要:
To broadcast different types of transmission having different tiers of coverage in a wireless broadcast network, each base station processes data for a wide-area transmission in accordance with a first mode (or coding and modulation scheme) to generate data symbols for the wide-area transmission and processes data for a local transmission in accordance with a second mode to generate data symbols for the local transmission. The first and second modes are selected based on the desired coverage for wide-area and local transmissions, respectively. The base station also generates pilots and overhead information for local and wide-area transmissions. The data, pilots, and overhead information for local and wide-area transmissions are multiplexed onto their transmission spans, which may be different sets of frequency subbands, different time segments, or different groups of subbands in different time segments. More than two different types of transmission may also be multiplexed and broadcast.
摘要:
To broadcast different types of transmission having different tiers of coverage in a wireless broadcast network, each base station processes data for a wide-area transmission in accordance with a first mode (or coding and modulation scheme) to generate data symbols for the wide-area transmission and processes data for a local transmission in accordance with a second mode to generate data symbols for the local transmission. The first and second modes are selected based on the desired coverage for wide-area and local transmissions, respectively. The base station also generates pilots and overhead information for local and wide-area transmissions. The data, pilots, and overhead information for local and wide-area transmissions are multiplexed onto their transmission spans, which may be different sets of frequency subbands, different time segments, or different groups of subbands in different time segments. More than two different types of transmission may also be multiplexed and broadcast.