Abstract:
The present invention is related to a high melt strength polypropylene (HMS-PP) comprising units derivable from at least one polyunsaturated fatty acid, a process for preparing said high melt strength polypropylene (HMS-PP), as well as an article comprising said high melt strength polypropylene (HMS-PP).
Abstract:
The present invention is directed to a process for producing a modified olefin polymer in an extruder having a feed zone, a melting zone, optionally a mixing zone and optionally a die zone, (A) introducing a stream of an olefin polymer into the feed zone of the extruder; (B) introducing a stream of a free radical generator directly into the feed zone or the melting zone or the mixing zone, if present, of the extruder; (C) introducing a stream of a functionally unsaturated compound directly into the feed zone or the melting zone or the mixing zone, if present, of the extruder; (D) extruding the mixture in the extruder at a temperature which is greater than the decomposition temperature of the free radical generator and the melting temperature of the olefin polymer but less than the decomposition temperature of the olefin polymer thereby producing the modified olefin polymer in the extruder; and, optionally, (G) passing the melt of the modified olefin polymer through the die zone to a pelletiser.
Abstract:
Polypropylene-Polyethylene blends comprising A) 75 to 90 wt % of a blend of A-1) polypropylene and A-2) polyethylene and B) 10 to 25 wt % of a compatibilizer being a heterophasic polyolefin composition comprising B-1) a polypropylene with an MFR2 between 1.0 and 300 g/10 min (according to ISO 1133 at 230° C. at a load of 2.16 kg) and B-2) a copolymer of ethylene and propylene or C4 to C10 alpha olefin with a Tg (measured with dynamic-mechanical thermal analysis, DMTA, according to ISO 6721-7) of below −25° C. and an intrinsic viscosity (measured in decalin according to DIN ISO 1628/1 at 135° C.) of at least 3.0 dl/g, whereby the blend has simultaneously increased Charpy Notched Impact Strength (according to ISO 179-1eA, measured at 23° C.), Flexural Modulus (according to ISO 178) as well as heat deflection resistance (determined with DMTA according to ISO 6721-7).