Abstract:
A rotary-vane pumping machine has a core structure that includes a stator assembly defining a contoured surface of a stator cavity, a rotor spinning around a rotor shaft axis that is fixed relative to the stator cavity, and end plates disposed on either side of the rotor. The rotor has a plurality of radial vanes slots for housing a corresponding plurality of vanes that slide within the radial vane slot of the rotor. Each of the plurality of vanes has side walls, a tip portion, and a base portion, and the base portion has one or more tabs extending from at least one axial end of the vane. The plurality of vanes, stator cavity, and rotor define a plurality of chamber cells. The core structure is substantially made of low coefficient of thermal expansion Invar materials to achieve precise non-contact sealing clearances between components of the machine.
Abstract:
A rotary vane combustion engine is provided that has a plurality of vane cells. This rotary vane combustion engine includes a rotor having a plurality of vanes; a stator enclosing the rotor to form a plurality of vane cells between the plurality of vanes; one or more intake ports for providing intake charge to the vane cells; one or more exhaust ports for removing exhaust gas from one of the vane cells; and a variable bandwidth fuel-air source connected to at least one of the intake ports for providing a discrete band of mixed fuel and air having a desired axial width to each of the plurality of vane cells. By providing a discrete band of fuel and air to each of the vane cells, this rotary vane combustion engine will allow the machine or engine to run at lower power without requiring it to run a vacuum to lower the density of mixed fuel and air. As a result, vacuum pumping losses can be substantially eliminated and the machine or engine can operate more efficiently.
Abstract:
A vane slot assembly and installation method for a rotary vane pumping machine including a rotor with a rotor axis of rotation. The rotor has a vane slot with two opposing, azimuthally separated, slot side walls. The rotor has a primary slot gear rack disposed radially along a first slot side wall. A radially reciprocating vane is movably disposed between the slot side walls. The vane has side walls facing the slot side walls, and has a primary vane gear rack disposed radially along a first vane side wall facing the first slot side wall. A plurality of vane slot rollers are movably disposed between the first slot side wall and the first vane side wall. The rollers have axes of rotation substantially parallel to the rotor axis and include an aligned roller having a primary roller gear. The primary roller gear engages the primary vane gear rack and the primary slot gear rack. As a result, friction-reducing roller bearings between the vane and the rotor slot are properly aligned radially.
Abstract:
A method for reducing the exhaust pollution emissions in a two-stroke sliding vane internal combustion engine. First, fresh air is inducted into a vane cell, and fuel is injected into the cell at an ultra-lean fuel-air equivalence ratio less than about 0.65. The fuel is injected at a location such that a circumferential distance at mid-cell-height to the stator site at the onset of combustion is at least about 4 times a vane cell height at intake. The ultra-lean fuel-air combination is then compressed and thoroughly premixed prior to combustion to a dimensionless concentration fluctuation fraction below about 0.25. The ultra-lean, thoroughly premixed fuel-air combination is then combusted. The combusted fuel-air combination is purged after an expansion cycle. The premixing step prior to combustion may use inclined airfoils within the intake duct to produce counter-rotating mixing vortices.
Abstract:
A sliding vane internal combustion engine that provides one or more expansion gas ducts directing pressurized gases from expansion volumes of the vane engine into an intake charge so as to increase the intake charge density. One or more intercoolers may be coupled to the expansion gas ducts to cool the pressurized gases flowing into the intake region. One or more bypass passages may also be provided to direct the pressurized gas flow around the corresponding intercooler. One or more flow control valves may be provided to control the rate of the pressurized gas flow into the intake region.
Abstract:
A method for reducing the exhaust pollution emissions in a sliding vane internal combustion engine. First, an ultra-lean fuel-air combination is thoroughly premixed, the fuel-air combination having an equivalence ratio less than about 0.60 and a dimensionless concentration fluctuation fraction below about 0.33. After being premixed, the ultra-lean fuel-air combination is inducted into a vane cell, compressed, and it is then combusted at a peak compression plateau. The combusted fuel-air combination is purged after an expansion cycle. The combusting of the fuel-air combination may be initiated by autoignition.