Abstract:
Techniques that provide low latency traffic segregation to ensure an edge user plane (UP) is not overloaded are described herein in at least one embodiment. In at least one embodiment, a method may include determining offload of low latency traffic of a user equipment (UE) at a mobile network edge, wherein the UE has non-low latency traffic associated with a first packet data network session for an access point name; notifying the UE to request creation of a second packet data network session for the access point name; selecting an edge UP element to handle the low latency traffic for the second packet data network session; creating the second packet data network session at the selected edge UP element; and notifying the UE that second packet data network session is created.
Abstract:
In one embodiment, a method is performed. A first user plane entity may be associated with a user plane group comprising a plurality of user plane entities. The first user plane entity may be associated with a second user plane entity. A failure of the second user plane entity may be detected. In response to detecting the failure of the second user plane entity, the first user plane entity may be activated.
Abstract:
In one embodiment, a method for selecting a software interface based on operator policy comprises receiving from a mobile device a message requesting that a packet data session be allocated, wherein the message includes a requested quality of service profile for the packet data session, selecting a software interface, from among a plurality of software interfaces, for communication with a packet node based on the contents of the message, for the packet node to provide the mobile device with access to a packet data network, and allocating the packet data session in communication with the packet node, wherein the requested quality of service profile is conveyed to the packet node using the selected software interface.
Abstract:
The present disclosure is directed at systems, methods and media for relieving RAN congestion in a core network. In some embodiments, RAN congestion information is reported from user equipment to a packet data gateway (PGW) through an eNodeB and a software gateway. The PGW can aggregate the RAN congestion information and periodically notify other network nodes, for example, a PCRF, about the aggregate congestion in a network. By aggregating RAN congestion information, the PGW can substantially reduce the signaling required to report RAN congestion in the core network.
Abstract:
In one embodiment, a method for selecting a software interface based on operator policy comprises receiving from a mobile device a message requesting that a packet data session be allocated, wherein the message includes a requested quality of service profile for the packet data session, selecting a software interface, from among a plurality of software interfaces, for communication with a packet node based on the contents of the message, for the packet node to provide the mobile device with access to a packet data network, and allocating the packet data session in communication with the packet node, wherein the requested quality of service profile is conveyed to the packet node using the selected software interface.
Abstract:
A method is provided in one example embodiment and includes analyzing characteristics of traffic associated with an application in a data communications network; defining each of a plurality of Access Point Names (“APNs”) for terminating traffic in the data communications network; comparing the application traffic characteristics with the APNs; and selecting one of the APNs based on results of the comparing, in which the selected one of the APNs is assigned to terminate the application traffic. In some embodiments, the application traffic characteristics include at least one of average data packet size, average uplink traffic volume, average downlink traffic volume, triggering traffic data generation, and session frequency. The method may further include periodically re-comparing the application traffic characteristics with the APNs and selecting a different one of the APNs based on results of the recomparing to terminate the application traffic.