Abstract:
An apparatus for fusion draw glass manufacture, including at least one isopipe (110) having at least one weir (114); and a fluid discharge member in proximity to the at least one weir (114) of the at least one isopipe (110), the fluid discharge member is in fluid communication with a remote fluid source. The fluid source can be a source of a gas, liquid, solid or radiation. The fluid can be heated or cooled. At least one of the temperature properties, flow properties and thickness properties of the molten glass can be locally changed with the discharged fluid. A method of forming a glass-glass laminate sheet and uses of the laminate sheet are disclosed.
Abstract:
A pull roll apparatus and method are described herein that can control a cross-draw tension and a down-draw tension of a glass sheet while manufacturing the glass sheet. In one embodiment, the pull roll apparatus includes a first driven stub roll pair, a second driven stub roll pair and a control device (e.g., PLC) that controls the first and second driven stub roll pairs while a first edge portion of the glass sheet is drawn between two vertically downtilted rolls associated with the first driven stub roll pair and while an opposing second edge portion of the glass sheet is drawn between two vertically downtilted rolls associated with the second driven stub roll pair. If desired, the pull roll apparatus may include a pulling roll assembly (located below the first and second driven stub rolls) or another set of driven stub roll pairs (located below the first and second driven stub roll pairs).
Abstract:
An apparatus for fusion draw glass manufacture, including at least one isopipe (110) having at least one weir (114); and a fluid discharge member in proximity to the at least one weir (114) of the at least one isopipe (110), the fluid discharge member is in fluid communication with a remote fluid source. The fluid source can be a source of a gas, liquid, solid or radiation. The fluid can be heated or cooled. At least one of the temperature properties, flow properties and thickness properties of the molten glass can be locally changed with the discharged fluid. A method of forming a glass-glass laminate sheet and uses of the laminate sheet are disclosed.
Abstract:
A pull roll apparatus and method are described herein that can control a cross-draw tension and a down-draw tension of a glass sheet while manufacturing the glass sheet. In one embodiment, the pull roll apparatus includes a first driven stub roll pair, a second driven stub roll pair and a control device (e.g., PLC) that controls the first and second driven stub roll pairs while a first edge portion of the glass sheet is drawn between two vertically downtilted rolls associated with the first driven stub roll pair and while an opposing second edge portion of the glass sheet is drawn between two vertically downtilted rolls associated with the second driven stub roll pair. If desired, the pull roll apparatus may include a pulling roll assembly (located below the first and second driven stub rolls) or another set of driven stub roll pairs (located below the first and second driven stub roll pairs).
Abstract:
A glass forming apparatus and method include a weir on at least a first side of a molten core glass reservoir. The weir includes an inclined surface that, in the intended direction of molten glass flow, slopes downward in the vertical direction while extending away from the molten core glass reservoir in the horizontal direction. A source of molten clad glass is configured above the glass forming apparatus such that when molten clad glass is flowing down and molten core glass is flowing over the weir, the molten clad glass drops onto the molten core glass at a highest upstream contact point that is located directly above the inclined surface of the weir.