摘要:
Provided are selected types of terpolymer components comprising terpolymers having monomer units derived from ethylene (E), dicyclopentadiene (DCPD) and norbornene-based (NB) co-monomers. Such terpolymer components have certain specified amounts of each co-monomer as well as certain specified molecular weight and glass transition temperature characteristics. Terpolymer components which are derivatized by hydrogenation and/or by epoxidation and/or hydroxylation are also disclosed, as well as thermoplastic polyolefin compositions which contain the terpolymer components and which have especially desirable structural and thermal properties.Also provided are processes for preparing and derivatizing the terpolymer components herein. Such preparation processes comprise: a) contacting ethylene with a polymerization mixture comprising selected amounts of both DCPD and NB co-monomers, in the presence of a selected activated cyclopentadienyl-fluorenyl metallocene catalyst under specific polymerization conditions to thereby form the desired ethylene-dicyclopentadiene-norbornene terpolymer components within the polymerization mixture. These terpolymer components can then be subsequently derivatized by hydrogenation or functionalization of the residual double bonds therein.
摘要:
An in-reactor polymer blend comprises (a) a propylene-containing first polymer; and (b) an ethylene-containing second polymer such that the polymer blend comprises between about 50 wt % and about 80 wt % units derived from ethylene and between about 50 wt % and about 20 wt % units derived from propylene. The blend is substantially free of dienes and the content of ethylene in the second polymer in the form of ethylene-ethylene-ethylene triads is at least 40%. The second polymer contains at least 0.1 branch having 8 or more carbon atoms per 10,000 carbons. In addition, the blend has a strain hardening index of at least 1.8, a shear thinning slope in the plot of log(dynamic viscosity) versus log(frequency) of less than −0.2 and exhibits at least two peaks when subjected to Differential Scanning Calorimetry (first melt) corresponding to a first melting point of at least 150° C. and a second melting point of at least 40° C. such that the difference between the first and second melting temperatures is at least 20° C.