Abstract:
A method and apparatus are disclosed for using a single credential request (e.g., registered public key or ECQV certificate) to obtain a plurality of credentials in a secure digital communication system having a plurality of trusted certificate authority CA entities and one or more subscriber entities A. In this way, entity A can be provisioned onto multiple PKI networks by leveraging a single registered public key or implicit certificate as a credential request to one or more CA entities to obtain additional credentials, where each additional credential can be used to derive additional public key-private key pairs for the entity A.
Abstract:
Challenge-response authentication protocols are disclosed herein, including systems and methods for a first device to authenticate a second device. In one embodiment, the following operations are performed by the first device: (a) sending to the second device: (i) a challenge value corresponding to an expected response value known by the first device, and (ii) a hiding value; (b) receiving from the second device a masked response value; (c) obtaining an expected masked response value from the expected response value and the hiding value; and (d) determining whether the expected masked response value matches the masked response value received from the second device. The operations from the perspective of the second device are also disclosed, which in some embodiments include computing the masked response value using the challenge value, the hiding value, and secret information known to the second device.
Abstract:
In some aspects, an encryption method comprises encrypting a first portion of a message using a first secret key. The first secret key is generated based on the public key of an entity. A one-way function is used to generate a second secret key from the first secret key, and the first secret key is subsequently discarded. A second portion of the message is encrypted using the second secret key. The encrypted first portion of the message and the encrypted second portion of the message are provided to the entity.
Abstract:
In some aspects, an encryption method comprises encrypting a first portion of a message using a first secret key. The first secret key is generated based on the public key of an entity. A one-way function is used to generate a second secret key from the first secret key, and the first secret key is subsequently discarded. A second portion of the message is encrypted using the second secret key. The encrypted first portion of the message and the encrypted second portion of the message are provided to the entity.
Abstract:
A method is presented to compute square roots of finite field elements from the prime finite field of characteristic p over which points lie on a defined elliptic curve. Specifically, while performing point decompression of points that lie on a standardized elliptic curve over a prime finite field of characteristic 2224−296+1, the present method utilizes short Lucas sub-sequences to optimize the implementation of a modified version of Mueller's square root algorithm, to find the square root modulo of a prime number. The resulting method is at least twice as fast as standard methods employed for square root computations performed on elliptic curves.
Abstract:
In some aspects of what is described here, a first wireless device detects proximity of a second wireless device (e.g., by a Near Field Communication (NFC) interface or another type of interface). Based on detecting proximity of the second wireless device, the first wireless device generates a recommendation request from information received from the second wireless device. The first wireless device sends the recommendation request to a trusted authority and receives a response. The response includes the trusted authority's recommendation whether to trust the second wireless device. The first wireless device can determine whether to trust the second wireless device based on the recommendation.
Abstract:
A method is presented for secure communication, the method including generating a signature using a private key, a nonce, and at least one of an identifier and a key component; and transmitting the signature, the nonce, a security parameter, and the at least one of the identifier and the key component, wherein the security parameter associates a user identity with a public key, the public key being associated with the private key.
Abstract:
Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n)G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.
Abstract:
In some aspects, an encryption method comprises encrypting a first portion of a message using a first secret key. The first secret key is generated based on the public key of an entity. A one-way function is used to generate a second secret key from the first secret key, and the first secret key is subsequently discarded. A second portion of the message is encrypted using the second secret key. The encrypted first portion of the message and the encrypted second portion of the message are provided to the entity.
Abstract:
A method is presented for secure communication, the method including generating a signature using a private key, a nonce, and at least one of an identifier and a key component; and transmitting the signature, the nonce, a security parameter, and the at least one of the identifier and the key component, wherein the security parameter associates a user identity with a public key, the public key being associated with the private key.