摘要:
According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
摘要:
A processing core implemented on a semiconductor chip is described having first execution unit logic circuitry that includes first comparison circuitry to compare each element in a first input vector against every element of a second input vector. The processing core also has second execution logic circuitry that includes second comparison circuitry to compare a first input value against every data element of an input vector.
摘要:
According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
摘要:
According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
摘要:
Systems, apparatuses, and methods of performing in a computer processor broadcasting data in response to a single vector packed broadcasting instruction that includes a source writemask register operand, a destination vector register operand, and an opcode. In some embodiments, the data of the source writemask register is zero extended prior to broadcasting.
摘要:
According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
摘要:
Method, apparatus and system embodiments to schedule OS-independent “shreds” without intervention of an operating system. For at least one embodiment, the shred is scheduled for execution by a scheduler routine rather than the operating system. A scheduler routine may run on each enabled sequencer. The schedulers may retrieve shred descriptors from a queue system. The sequencer associated with the scheduler may then execute the shred described by the descriptor. Other embodiments are also described and claimed.
摘要:
Method, apparatus and system embodiments to schedule OS-independent “shreds” without intervention of an operating system. For at least one embodiment, the shred is scheduled for execution by a scheduler routine rather than the operating system. A scheduler routine may run on each enabled sequencer. The schedulers may retrieve shred descriptors from a queue system. The sequencer associated with the scheduler may then execute the shred described by the descriptor. Other embodiments are also described and claimed.
摘要:
According to one example embodiment, there is disclosed herein uses partial recurrence relaxation for parallelizing DOACROSS loops on multi-core computer architectures. By one example definition, a DOACROSS may be a loop that allows successive iterations executing by overlapping; that is, all iterations must impose a partial execution order. According to one embodiment, the inventive subject matter may be used to transform the dependence structure of a given loop with recurrences for maximal degree of thread-level parallelism (TLP), where the threads can be mapped on to either different logical processors (in a hyperthreaded processor) or can be mapped onto different physical cores (or processors) in a multi-core processor.
摘要:
Techniques for execution-driven loop splitting and load-safe code hosting are provided. Compiled code includes statements associated with an original loop and statements associated with an alternative loop. The alternative loop reproduces the original loop except for conditional load-safe invariant expressions that appeared in the original loop and that are separated out of the alternative loop. During processing, once the conditional load-safe invariant expressions are computed and referenced for a first time within the original loop, processing dynamically switches to the alternative loop where the conditional load-safe invariant expressions are computed outside of the alternative loop and referenced from within the alternative loop.