摘要:
A PEM fuel cell power plant includes fuel cells, each of which has a cathode reactant flow field plate which is substantially impermeable to fluids, a coolant source, and a fluid permeable anode reactant flow field plate adjacent to said coolant source. The anode reactant flow field plates pass coolant from the coolant sources into the cells where the coolant is evaporated to cool the cells. The cathode flow field plates prevent reactant crossover between adjacent cells. By providing a single permeable plate for each cell in the power plant the amount of coolant present in the power plant at shut down is limited to a degree which does not require adjunct coolant purging components to remove coolant from the plates when the power plant is shut down during freezing ambient conditions. Thus the amount of residual frozen coolant in the power plant that forms in the plates during shut down in such freezing conditions will be limited. The power plant can thus be restarted and brought up to full operating power levels quickly due to the reduced amount of frozen coolant that must be melted during startup. Pressure in the coolant source is preferably greater than ambient pressure, and pressure in the anode reactant flow field is greater than the pressure in the coolant source so as to prevent the coolant from flooding the cells. The power plant is well suited for use in powering vehicles.
摘要:
A PEM fuel cell power plant includes fuel cells, each of which has a cathode reactant flow field plate which is substantially impermeable to fluids, a coolant source, and a fluid permeable anode reactant flow field plate adjacent to said coolant source. The anode reactant flow field plates pass coolant from the coolant sources into the cells where the coolant is evaporated to cool the cells. The cathode flow field plates prevent reactant crossover between adjacent cells. By providing a single permeable plate for each cell in the power plant the amount of coolant present in the power plant at shut down is limited to a degree which does not require adjunct coolant purging components to remove coolant from the plates when the power plant is shut down during freezing ambient conditions. Thus the amount of residual frozen coolant in the power plant that forms in the plates during shut down in such freezing conditions will be limited. The power plant can thus be restarted and brought up to full operating power levels quickly due to the reduced amount of frozen coolant that must be melted during startup. Pressure in the coolant source is preferably greater than ambient pressure, and pressure in the anode reactant flow field is greater than the pressure in the coolant source so as to prevent the coolant from flooding the cells. The power plant is well suited for use in powering vehicles.
摘要:
A fuel cell power plant (10) includes an oxidant stream controlled to enter a fuel cell (12) of the plant at a pressure of between about 0.058 pounds per square inch gas (‘psig’) and about 4.4 psig and the oxidant stream passes through the fuel cell (12) at an oxidant stoichiometry of between about 120% and about 180%, and preferably between about 150% and 170%. A macro-pore cathode gas diffusion layer (36) is secured between a cathode catalyst (16) and a cathode flow field (28). A porous coolant plate (44) is secured in fluid communication with and adjacent the cathode flow field (28). The gas diffusion layer (36) and coolant plate (44) facilitate removal of product water to eliminate flooding and to permit operation at low oxidant stoichiometry and high water balance temperature, thereby minimizing need for water capture and heat rejection apparatus.
摘要:
A composite electrolyte membrane (10) for a fuel cell (30) includes an ionomer component (16) extending continuously between opposed first and second contact surfaces (12, 14) defined by the membrane (10). The ionomer component is a hydrated nanoporous ionomer consisting of a cation exchange resin. The membrane (10) also includes a microporous region (18) consisting of the ionomer compound (16) and a structural matrix (20) dispersed through region (18) within the ionomer compound (16) to define open pores having a diameter of between 0.3 and 1.0 microns. The microporous region (18) does not extend between the contact surfaces (12, 14), and facilitates water management between the electrode catalysts (32, 34).
摘要:
Coolant velocity greater than zero everywhere within the coolant channels (78, 85) of fuel cells (38) in a fuel cell stack (37) is assured by providing a flow of biphase fluid in the coolant channels, the flow being created by the outflow of a condenser (59). Positive pressure is applied to the coolant inlet (66) of the coolant channels. Biphase flow from an oxidant exhaust condenser, which may be a vehicle radiator (120), renders the coolant return flow more freeze tolerant. Using biphase flow within the coolant channels eliminates the need for a bubble-clearing liquid pump and reduces liquid inventory and other plumbing; this makes the fuel cell power plant more freeze tolerant.
摘要:
A PEM fuel cell power plant includes fuel cells, each of which has a cathode reactant flow field plate which is substantially impermeable to fluids, a coolant source, and a fluid permeable anode reactant flow field plate adjacent to said coolant source. The anode reactant flow field plates pass coolant from the coolant sources into the cells where the coolant is evaporated to cool the cells. The cathode flow field plates prevent reactant crossover between adjacent cells. By providing a single permeable plate for each cell in the power plant the amount of coolant present in the power plant at shut down is limited to a degree which does not require adjunct coolant purging components to remove coolant from the plates when the power plant is shut down during freezing ambient conditions. Thus the amount of residual frozen coolant in the power plant that forms in the plates during shut down in such freezing conditions will be limited. The power plant can thus be restarted and brought up to full operating power levels quickly due to the reduced amount of frozen coolant that must be melted during startup. Pressure in the coolant source is preferably greater than ambient pressure, and pressure in the anode reactant flow field is greater than the pressure in the coolant source so as to prevent the coolant from flooding the cells. The power plant is well suited for use in powering vehicles.
摘要:
A fuel cell stack includes at least one fuel cell having a fuel inlet for directing a hydrogen fuel to the fuel cell to generate electric current; a sensor cell having an anode, a cathode and a membrane between the anode and the cathode, the anode being communicated with the fuel inlet to receive a portion of fuel from the fuel inlet, the sensor cell being connected across the stack to carry the electric current whereby hydrogen from the portion of fuel is electrochemically pumped to the cathode of the sensor cell; and a sensor communicated with the sensor cell to receive a signal corresponding to evolution of hydrogen from the anode to the cathode of the sensor cell and adapted to detect contaminants in the fuel based upon the signal.
摘要:
A PEM fuel cell power plant includes fuel cells, each of which has a cathode reactant flow field plate which is substantially impermeable to fluids, a coolant source, and a fluid permeable anode reactant flow field plate adjacent to said coolant source. The anode reactant flow field plates pass coolant from the coolant sources into the cells where the coolant is evaporated to cool the cells. The cathode flow field plates prevent reactant crossover between adjacent cells. By providing a single permeable plate for each cell in the power plant the amount of coolant present in the power plant at shut down is limited to a degree which does not require adjunct coolant purging components to remove coolant from the plates when the power plant is shut down during freezing ambient conditions. Thus the amount of residual frozen coolant in the power plant that forms in the plates during shut down in such freezing conditions will be limited. The power plant can thus be restarted and brought up to full operating power levels quickly due to the reduced amount of frozen coolant that must be melted during startup. Pressure in the coolant source is preferably greater than ambient pressure, and pressure in the anode reactant flow field is greater than the pressure in the coolant source so as to prevent the coolant from flooding the cells. The power plant is well suited for use in powering vehicles.
摘要:
Water passageways (67; 78, 85; 78a, 85a) that provide water through reactant gas flow field plates (74, 81) to cool the fuel cells (38) may be grooves (76, 77; 83, 84) or may comprise a plane of porous hydrophilic material (78a, 85a), may be vented to atmosphere (99) by a porous plug (69), or pumped (89, 146) with or without removing any water from the passageways. A condenser (59, 124) receives exhaust of reactant air that evaporatively cools the stack (37), and may have a contiguous reservoir (64, 128), be vertical (a vehicle radiator, FIG. 2), be horizontal across the top of the stack (37, FIG. 5), or below (124) the stack (120). Condenser air flow may be controlled by shutters (155), or by a controlled, freeze-proof heat exchanger (59a). A deionizer (175) may be used. Sensible heat transferred into the water is removed by a heat exchanger 182; a controller (185) controls water flow (180) and temperature as well as air flow to provide predetermined allocation of cooling between evaporative and sensible.
摘要:
Water passageways (67; 78, 85; 78a, 85a) that provide water through reactant gas flow field plates (74, 81) to cool the fuel cells (38) may be grooves (76, 77; 83, 84) or may comprise a plane of porous hydrophilic material (78a, 85a), may be vented to atmosphere (99) by a porous plug (69), or pumped (89, 146) with or without removing any water from the passageways. A condenser (59, 124) receives exhaust of reactant air that evaporatively cools the stack (37), and may have a contiguous reservoir (64, 128), be vertical (a vehicle radiator, FIG. 2), be horizontal across the top of the stack (37, FIG. 5), or below (124) the stack (120). Condenser air flow may be controlled by shutters (155), or by a controlled, freeze-proof heat exchanger (59a). A deionizer (175) may be used. Sensible heat transferred into the water is removed by a heat exchanger 182; a controller (185) controls water flow (180) and temperature as well as air flow to provide predetermined allocation of cooling between evaporative and sensible.