Abstract:
An optical pickup device includes a light module, emitting light and receiving light reflected from a recording medium, and a solid immersion lens (SIL) member disposed in an optical path between the light module and the recording medium. The SIL has a planar surface facing the recording medium and a plurality of elliptically curved surfaces opposite the recording medium. The elliptically curved surfaces have different radii of curvature arranged symmetrical with respect to a central axis for focusing the incident light to form a tight beam spot on a recording plane of the recording medium.
Abstract:
An optical pickup is compatible with at least two types of optical recording media each using light beams having different wavelengths from one another and which are used for recording and reproducing information. The optical pickup includes a first laser light source for emitting a first light beam having a relatively long wavelength, and a second laser light source for emitting a second light beam having a relatively short wavelength. A beam splitting plate transmits the first light beam and reflects the second light beam toward a collimator. The collimator collimates the light beam incident from the beam splitting plate to transmit the collimated light beam into an objective lens. The objective lens is designed so that the second light beam is focused on the information recording surface of a second optical recording medium whose information recording surface is closer to the objective lens than the information recording surface of the first optical recording medium, to form an optical spot optimized to the second optical recording medium. The optical distance from the first laser light source to the information recording surface of a first optical recording medium whose information recording surface is relatively farther from the objective lens, is shorter than the optical distance from the second laser light source to the information recording surface of the second optical recording medium so that spherical aberration occurring when the first light beam is used is removed. An aberration correction plate is located on an optical path between the first laser light source and the beam splitting plate, and corrects an optical aberration occurring when the beam splitting plate is used.
Abstract:
A reproducing/recording optical pickup compatible with discs having different thicknesses includes a transparent plate having a central portion formed with a diffraction grating pattern for diffracting the light travelling from the light source to the objective lens, and a transparent portion through which the light passes, and a photodetector having first and second light receiving portions. The zero-order transmitted light and the passing light are focused using all regions of the aperture of the objective lens with respect to a thin disc. The positive first-order diffracted light diffracted by the diffraction grating pattern of the transparent plate is focused onto a thick disc by partial regions of the objective lens. Then, the reflected lights thereof are detected by the first and second light receiving portions, respectively. Because signals for reproduction and servo for each disc are detected as the detection signals of the first and second light receiving portions, stable servo and noiseless reproduction are possible, irrespective of the thickness of the disc used.
Abstract:
A dual-focus objective lens for an optical pickup which is compatible with both 0.6 mm and 1.2 mm disks is compensated in its aberration with respect to a light spot on a recording plane of the loaded disk and at least one of a light-receiving plane and a light-emitting plane of the dual focus objective lens has a first curvature unit and a second curvature unit whose curvature radii are different from each other. Incident light beams passing through the whole region of the first curvature unit and second curvature unit are focused onto the thinner disk, and parts of incident light beams passing through the region around the first curvature unit are focused onto the thicker disk. In the optical pickup having the dual focus objective lens, since the light is not divided, light efficiency is improved, thereby reproducing a signal with a high signal-to-noise ratio. Particularly, an optical pickup enabling recording as well as reproduction is obtained.
Abstract:
A recording/reproducing apparatus having an optical pickup device which is efficient in light use having little spherical aberration. The recording and/or reproducing apparatus includes an optical pickup having an objective lens, disposed opposite a disk, having a light passing region divided into central, intermediate and periphery regions corresponding to a near axis area, an intermediate axis area and a far axis area of incident light, where the curvature of the central and peripheral regions is optimized for a thin disk and that of the intermediate region is optimized for a thick disk, a light source irradiating light toward a disk through the objective lens; a photo detector for detecting light reflected from the disk, and a beam splitter, disposed between the objective lens and the light source, for transmitting light from the light source toward the objective lens and for diffracting light reflected from the disks toward the photo detector; and a processing unit to process an information signal to control the incident light generated by the light source, and to process the detected light from the photodetector. Therefore, the optical pickup device can be used for both compact disks (CDs) that are thick using light beam passing the near and intermediate regions of said objective lens, and digital video disks (DVDs) that are thin using light beam passing the near and far axis regions of said objective lens, and detect signals without picking up noise regardless of the thickness of the disk.
Abstract:
An optical pickup compatible with recording media having different formats, the optical pickup includes a light device module having a first light beam source and a second light beam source to emit corresponding first and second light beams having different wavelengths, a hologram light coupler to separately guide the first and second light beams along the same optical path such that the first and second light beams go toward a corresponding one of the recording media, an optical path changing element to selectively alter the optical path of an incident light beam, and an objective lens disposed on an optical path between said optical path changing element the corresponding one of the recording media to focus the first and second light beam on the corresponding one of the recording media, and a photodetector to receive the first and second light beam incident from said optical path changing element.
Abstract:
An optical pickup compatible with a plurality of optical recording media each using light of a different wavelength. The optical pickup includes at least one light source, an objective lens having a function of focusing light emitted from the light source into the optimal light spot on an information recording surface of one of the plurality of the optical recording media, and a light detector to detect light transmitted through the objective lens after being reflected from the information recording surface of the optical recording medium on which the light spot is formed. The objective lens has an inner area, an annular lens area and an outer area such that the annular lens area divides the inner area from the outer area and has a ring shape centered at a vertex. The inner area, the annular lens area and the outer area have aspherical surface shapes to focus light transmitted through the inner area and the outer area into a single light spot by which information can be read from the information recording surface of a relatively thin first optical recording medium and scatter light transmitted through the annular lens area located between the inner area and the outer area so that information cannot be read from the information recording surface of the first optical recording medium, during reproduction of the first optical recording medium. The inner area and the annular lens area transmit light into a single light spot by which information can be read from the information recording surface of a relatively thick second optical recording medium and scatters light transmitted through the outer lens area so that information cannot be read from the information recording surface of the second optical recording medium, during reproduction of the second optical recording medium.
Abstract:
A lens device which can be used as an objective lens in an optical pickup apparatus includes an objective lens provided along a light path facing a disc and having a predetermined effective diameter, and light controlling means provided along the light path for controlling the light in an intermediate region between near and far axes of an incident light beam, thus providing a simplified and inexpensive device for using discs of differing thickness in a single disc drive, by reducing the spherical aberration effect.
Abstract:
An optical pickup apparatus which can reduce effective size of an optical spot focused on an optical recording medium is provided. The optical pickup apparatus, in which a light beam emitted from a light source is focused on an optical medium for recording a signal on the optical medium and reproducing the signal from the optical medium, includes an objective lens for focusing the light beam on the surface of the optical medium and focusing a beam reflected from the surface of the optical medium, and two or more wave plates each having a different optical axis direction and located on an optical path between the light source and the objective lens. As a result, the spot size and the intensity of a first side lobe can be decreased, and the spot size can be adjusted according to the recording and reproducing modes.
Abstract:
A focus error detector for detecting a signal representing a degree of a focus error of an objective lens with respect to an optical disk includes two focusing lenses each for focusing the reflected light of the optical disk by splitting the reflected light into two beams with respect to the optical axis and two photo-detectors for receiving the respectively focused beams, which simplifies necessary components for a beam size method. The two focusing lenses whose focal lengths are different from each other does not necessitate use of a beam splitter, thereby contributing to reduction of necessary components and optimizing the arrangement of the components. Also, the operational stability is secured by removing the sensitivity to the tilt and shift of an optical axis.