摘要:
Systems and methods for long-term non-volatile non-rotating optical storage of digital information rely on storage elements that include optical storage media, an access subsystem configured to access bits of information from one of the storage elements, and a support structure configured to support multiple storage elements. A laser used to retrieve and/or record bits of digital information may be moved along two orthogonal dimensions while the storage element is non-rotating.
摘要:
An optical information recording/reproducing apparatus and method thereof which compensate for the effect of mechanical instability on holographic data storage. A time dependent deviation profile of an optical beam during recording is determined. The time dependent deviation profile is related to a phase profile to be applied to a reference beam during recording or reproduction of a hologram, and the related phase profile is applied to the reference beam during recording or reproduction of the hologram.
摘要:
Provided is a holographic data storage system characterized by including: a first polarizing beam splitter (PBS), wherein at least either of a first lens module and a second lens module transmits P-polarized light and reflects S-polarized light; a relay lens collecting light passing through the first PBS; a mirror reflecting the light collected through the relay lens back to the relay lens; and a quarter wave plate located between a second PBS beam splitter and the relay lens, converting transmitted linearly polarized light into circularly polarized light, and converting the circularly polarized light into linearly polarized light. By reducing the volume of the relay lens, it is possible to decrease the size of the holographic data storage system, and by decreasing the number of lenses, it is possible to lower manufacturing costs.
摘要:
An apparatus includes a solid immersion mirror with opposing, reflective, inner sidewalls having inner surfaces facing a focal region and outer surfaces opposite the inner surfaces. The solid immersion mirror also include opposing outer sidewalls spaced apart from and facing the outer surfaces of the inner sidewalls, and a fill material between the inner sidewalls and outer sidewalls. The apparatus also includes a near-field transducer located in the focal region proximate a media-facing surface.
摘要:
An apparatus includes a solid immersion mirror with opposing, reflective, inner sidewalls having inner surfaces facing a focal region and outer surfaces opposite the inner surfaces. The solid immersion mirror also include opposing outer sidewalls spaced apart from and facing the outer surfaces of the inner sidewalls, and a fill material between the inner sidewalls and outer sidewalls. The apparatus also includes a near-field transducer located in the focal region proximate a media-facing surface.
摘要:
The laser light source, the PBS, and the reference light mirror are arranged in such a manner as to simultaneously satisfy Lsig+LBS≠s (Lld/m) (s: positive integer, m: positive integer), Lref+LBS≠t (Lld/m) (t: positive integer), and u(Lld/m)−(ΔL/2)≦Lsig−Lref≦u(Lld/m)+(ΔL/2) (u: integer), where Lld represents an in-vacuum internal resonator length of the laser light source, LBS represents an in-vacuum-converted optical path length of a laser beam between the emission end surface of the laser light source and the PBS, Lsig represents an in-vacuum-converted optical path length of signal light between the PBS and the reflecting unit of the optical disk, Lref represents an in-vacuum-converted optical path length of reference light between the PBS and the reference light mirror, and ΔL represents an interference permissible optical path length of the laser beam.
摘要:
A data recording apparatus and method using three dimensional (3D) optical memory and an authentication apparatus and method using 3D optical memory are provided. The data recording apparatus includes a recording excitation light splitting unit, a condition storage unit, and a data recording unit. The recording excitation light splitting unit splits recording excitation light into first split light and second split light. The condition storage unit stores recording conditions including information about the waveforms, wavelengths and phases of the split light and information about an arrangement of reflection mirrors configured to reflect the split light. The data recording unit records storage data by making the split light incident on the 3D optical memory through the reflection mirrors under the recording conditions.
摘要:
A method for storing data including: providing a first substrate having a plurality of micro-holograms therein, the micro-holograms being indicative of the data; providing a second hologram-supporting substrate; illuminating the plurality of micro-holograms in the first substrate through the second substrate, thereby producing a holographic pattern in the second substrate indicative of reflections of the plurality of micro-holograms in the first substrate; providing a third hologram-supporting substrate; and, illuminating the holographic pattern in the second substrate through the third substrate, thereby substantially replicating the plurality of micro-holograms in the first substrate in the third substrate.
摘要:
A method and device for re-writing data on a holographic storage device is disclosed. First and second electro-optic modulators may phase shift the reference and data beams used to store data on the photorefractive crystal. When the reference beam is shifted 180° out of phase with respect to the data beam, the photorefractive crystal is erased.
摘要:
In a method of recording and reading optical information in a recording medium using holography, a first recording operation is performed for recording optical information in a first recording region in an overlapping manner by allowing a reference beam and a signal beam with data loaded to interfere with each other in the first recording region, the reference beam being angularly multiplexed at predetermined intervals. Furthermore, a second recording operation is performed for recording optical information in a second recording region adjacent to the first recording region in an overlapping manner by allowing the reference beam and the signal beam to interfere with each other in the second recording region, the reference beam being angularly multiplexed between the predetermined intervals. Consequently, optical information can be recorded so as to easily detect and determine a selected reproducing beam, thus increasing the reading efficiency of the optical information.