Abstract:
An optical pickup for correcting an astigmatic difference of a light by using a collimating lens arranged at an angle with respect to the thickness direction of an active layer of a light source and parallel to the width direction of the active layer, for collimating the light emitted from the light source, is provided. The collimating lens is arranged between an edge emitting laser diode having an active layer and a beam splitter, and corrects the astigmatic difference of the light emitted from the edge emitting laser diode. Therefore, a compact optical pickup can be achieved since additional optical elements for correcting the astigmatic difference of the laser beam are not required.
Abstract:
An objective lens device having two light control surfaces and an optical pickup able to adopt disks having different thicknesses as a recording medium. The objective lens device includes an objective lens arranged along an optical path parallel to the disks, and first and second control portions formed in a light incident surface of the objective lens, a light emitting surface thereof, or an extra transparent member. Therefore, two disks having different thicknesses are compatible as a recording medium, and light interference occurring when using a thick disk can be decreased.
Abstract:
In a method and an apparatus for correcting aberration due to optical disk tilt, the apparatus includes a correction plate through which a first light beam passes by an object lens in an optical disk, a light source and a photo detector for generating and receiving a second light beam to detect the magnitude of the optical disk tilt, respectively, and an actuator for inclining the correction plate based on the detected signal. The correction plate has the same optical properties as those of the substrate of the optical disk, irrespective of the optical pick surroundings and offset the aberration due to the optical disk tilt. Therefore, while the best performance of the optical pickup is ensured, adverse effects caused by the aberration due to the optical disk tilt can be eliminated through simple circuitry.
Abstract:
A magnetic circuit, an optical pickup actuator, an optical recording and/or reproducing apparatus using the magnetic circuit, and method of the same, wherein the magnetic circuit includes a plurality of focus coil units each of which includes a first focus coil and a second focus coil, and a magnet including a plurality of magnet portions which interact with the plurality of focus coil units and each of which is polarized in a direction opposite to adjacent magnet portions thereamong. Here, electromagnetic forces act on the first and second focus coils in each focus coil unit in a same direction in response to focus driving signals and in opposite directions in response to tilt driving signals, with the first and second focus coils in each focus coil unit have different effective coil lengths.
Abstract:
An optical pickup which, when a first light reflected by a recording medium is divided into a central light area and first and second peripheral light areas at both sides of the central light area, divides the first light reflected by the recording medium into at least 6 light areas, and the at least 6 light areas are independently detected from first through sixth light-receiving portions of a photodetector. Hence, the photodetector can detect a tracking error signal whose offset generation due to a shift of an objective lens is insensitive and whose offset generation due to an initial photodetector balance deviation is depressed.
Abstract:
An optical pickup apparatus includes a first light source to emit a first light beam having a predetermined wavelength, a first optical path changer to change a proceeding path of the first light beam, an objective lens to focus the first light beam on a recording medium, a diffraction member to divide the first light beam reflected by the recording medium into five light regions, the diffraction member having a first diffraction region having a wide width in a direction corresponding to a tangential direction of the recording medium and second through fifth diffraction regions sequentially arranged around the outside of the first diffraction region in a direction corresponding to a radial direction of the recording medium, and a first photodetector having first through fifth light receiving portions to receive the first light beam reflected by the recording medium.
Abstract:
An optical pickup for a recording medium includes a light source, an objective lens, a main photodetector, and a front photodetector. The configuration of the optical pickup enables converging or diverging of light to be incident on a plate beam splitter so that light can be received at an effective light receiving region of a front photodetector without interference due to internal reflection occurring in the plate beam splitter. In the alternative, a wedge beam splitter in the optical pickup includes first and second mirror planes at a predetermined angle to transmit and reflect incident light at a predetermined ratio. In the optical pickup, an amount of light that is exactly proportional to an output power of the light source can be detected, where the output power of the light source can be accurately controlled, thereby improving a linearity of the output power of the light source.
Abstract:
A method and an apparatus for identifying the type of an optical recording medium are provided. The method includes detecting a surface reflected signal SS and a writable-surface reflected signal SR of an optical recording medium while performing a focus search using a first optical system, counting a time difference DTS between a high peak and a low peak of the surface reflected signal SS, counting a time difference DTR between the high peak of the surface reflected signal and a high peak of the writable-surface reflected signal SR, obtaining DT by substituting DTR and DTS into the following equation: DT = ( DT R ) a ( DT S ) b ( a - b ≥ 1 2 ) and comparing DT with a reference time T, and driving the first optical system if DT is greater than T and driving a second optical system if DT is not greater than T.
Abstract translation:提供了一种用于识别光学记录介质的类型的方法和装置。 该方法包括在使用第一光学系统执行聚焦搜索的同时检测光学记录介质的表面反射信号S S S S和可写表面反射信号S SUB S R S,计数 在表面反射信号S S S的高峰值和低峰值之间的时差DT S S / S,计数在表面反射信号S S S上的时间差DT< S< 表面反射信号的高峰值和可写表面反射信号S的高峰值,通过用DT< R>和DT< S>和< >进入以下公式:
Abstract:
An apparatus and method for detecting beam power generated by a plurality of light sources, using a single device. The apparatus includes a light-receiving unit that receives the beam power generated by one of a plurality of light sources, and an amplifying unit that selects a gain, amplifies the beam power received by the light-receiving unit according to the selected gain, and outputs the beam power amplified as a detected beam power. According to the apparatus and method, received beam power (or amplification gain) is amplified by a gain determined according to the characteristics of the respective light sources. Thus, it is possible to provide the detected beam power in consideration of a sufficient dynamic range for the each light source, thereby realizing effective APC.
Abstract:
A magnetic circuit and an optical recording and/or reproducing apparatus employing the magnetic circuit, having: a magnet with first and second magnetic portions adjacent to each other and opposite in polarity, and third and fourth magnetic portions surrounding the first and second magnetic portions, respectively, and have opposite polarities to the first and second magnetic portions, respectively; and at least one of a tracking coil unit or a focus coil unit. The tracking coil unit has first through third tracking coils arranged in a tracking direction so that each tracking coil interacts with two of the first through fourth magnetic portions. The focus coil unit has first through fourth focus coils, two of which are disposed in a focus direction to interact with the first and third magnetic portions, and the remaining two of which are disposed in the focus direction to interact with second and fourth magnetic portions.