摘要:
A technique dynamically resizes Traffic Engineering (TE) Label Switched Paths (LSPs) at a head-end node of the TE-LSPs in preparation to receive redirected traffic in response to an event in a computer network. The novel dynamic TE-LSP resizing technique is based on the detection of an event in the network that could cause traffic destined for one or more other (“remote”) head-end nodes of one or more TE-LSPs to be redirected to an event-detecting (“local”) head-end node of one or more TE-LSPs. An example of such a traffic redirection event is failure of a remote head-end node or failure of any of its TE-LSPs. Specifically, the local head-end node maintains TE-LSP steady state sampling and resizing frequencies to adapt the bandwidth of its TE-LSP(s) to gradual changes in the network over time. Upon detection of an event identifying possible traffic redirection, the local head-end node enters a Fast Resize (FR) state, in which the sampling and resizing frequencies are increased to quickly adapt the TE-LSP bandwidth(s) to any received redirected traffic.
摘要:
A local fast reroute (FRR) technique is implemented at the edge of a computer network. In accordance with the technique, if an edge device detects a node or link failure that prevents it from communicating with a neighboring routing domain, the edge device reroutes at least some data packets addressed to that domain to a backup edge device which, in turn, forwards the packets to the neighboring domain. The rerouted packets are designated as being “protected” (i.e., rerouted) data packets before they are forwarded to the backup edge device. The backup edge device identifies protected data packets as those which contain a predetermined “service” label in their MPLS label stacks. In other words, the service label is used as an identifier for packets that have been FRR rerouted. Upon receiving a data packet containing a service label, the backup edge device is not permitted to reroute the packet a second time, e.g., in response to another inter-domain node or link failure, thereby preventing loops from developing at the edge of the network.
摘要:
A technique enables an intermediate network node to efficiently process link-state packets using a single running context (i.e., process or thread). The intermediate network node floods received link-state packets (LSP) before performing shortest path first (SPF) calculations and routing information base (RIB) updates. In addition, the node limits the number of LSPs that are permitted to be flooded before the node performs its SPF calculations. More specifically, if the number of link-state packets that are flooded during a flooding cycle exceeds a first predetermined threshold value, the node performs the SPF calculations before additional packets may be flooded. The intermediate network node also limits how long its RIB update may be delayed in favor of flooding operations. When the number of LSPs flooded after the SPF calculations exceeds a second predetermined threshold value or there are no more packets to be flooded, the node updates the contents of its RIB based on the SPF calculations.
摘要:
A method and apparatus are disclosed for performing a shortest path first network routing path determination in a data communications network based in part on information about links that are associated as shared risk link groups. Micro-loops are avoided in computing shortest path first trees by considering whether links are within shared risk link groups. In a first approach, for each link state packet in a link state database, listed adjacencies are removed if the link between the node originating the LSP and the reported adjacency belongs to a shared risk link group for which one component (local link) is known as down, and a shortest path first computation is then performed. In a second approach, during the SPT computation and after having added a first node to a path, each neighboring node is added to a tentative tree if and only if, a link between the first node and the neighboring node does not belong to a shared risk link group for which one component (local link) is known as down.
摘要:
Hiding a service node in a network from a network topology is provided. In one embodiment, for example, an apparatus for hiding a service node in a network from a network topology, the apparatus comprising: a network interface; a processor; and one or more stored sequences of instructions which, when executed by the processor, cause the processor to perform: discovering a service node in a data network in accordance with a link-state protocol wherein the service node provides a network topology dependent service other than packet forwarding; establishing a link-state adjacency with the service node and one or more packet forwarding nodes in accordance with the link-state protocol; receiving a link-state advertisement; in response to identifying the link-state advertisement as an originating link-state advertisement sent from the service node, suppressing flooding of the received link-state advertisement to the one or more packet forwarding nodes.
摘要:
A path verification protocol (PVP) which enumerates a series of messages sent to a set of nodes, or routers, along a suspected path identifies forwarding plane problems for effecting changes at the control plane level. The messages include a command requesting interrogation of a further remote node for obtaining information about the path between the node receiving the PVP message and the further remote node. The node receiving the PVP message replies with a command response indicative of the outcome of attempts to reach the further remote node. The series of messages collectively covers a set of important routing points along a path from the originator to the recipient. The aggregate command responses to the series of PVP messages is analyzed to identify not only whether the entire path is operational, but also the location and nature of the problem.
摘要:
A method and apparatus are disclosed for performing a shortest path first network routing path determination in a data communications network based in part on information about links that are associated as shared risk link groups. Micro-loops are avoided in computing shortest path first trees by considering whether links are within shared risk link groups. In a first approach, for each link state packet in a link state database, listed adjacencies are removed if the link between the node originating the LSP and the reported adjacency belongs to a shared risk link group for which one component (local link) is known as down, and a shortest path first computation is then performed. In a second approach, during the SPT computation and after having added a first node to a path, each neighboring node is added to a tentative tree if and only if, a link between the first node and the neighboring node does not belong to a shared risk link group for which one component (local link) is known as down.
摘要:
A technique distinguishes between link and node failure using bidirectional forwarding detection (BFD) in a computer network. According to the novel technique, a BFD session is established over a first link between a monitoring node and a first interface of a monitored node. In addition, one or more novel unidirectional BFD (uBFD) sessions from one or more corresponding other interfaces of the monitored node to the monitoring node (e.g., as configured by the monitored node to detect its failure), the one or more uBFD sessions traversing links other than the first link (e.g., “not-via” the monitored node) are established, the one or more uBFD sessions traversing links other than the first link (e.g., “not-via” the monitored node). For instance, the one or more uBFD sessions correspond to one or more line cards of the monitored node. In response to detecting a lack of connectivity resulting from, e.g., failure of the BFD session, the monitoring node determines that the first link has failed if at least one uBFD session is operational. Moreover, in response to detecting failure of the BFD session and all of the one or more uBFD sessions, the monitoring node determines that the monitored node has failed.
摘要:
A technique enables bidirectional forwarding detection (BFD) between first and second edge devices in a computer network, wherein the second edge device is not configured for BFD. According to the novel technique, a BFD Echo session is established from the first edge device to the first edge device via the second edge device, i.e., along a monitored path (e.g., a single link). Also, an external border gateway protocol (eBGP) session is established between the first and second edge devices over an alternate path (e.g., an eBGP multi-hop session). The first edge device determines that the monitored path is down upon not receiving a returned BFD Echo message from the second edge device. In response, the first edge device notifies the second edge device that the monitored path is down through the eBGP session over the alternate path. Notably, upon notifying the second edge device that the monitored path is down, the first edge device breaks the eBGP session, and upon receiving the notification, the second edge device also breaks the eBGP session.
摘要:
A method of identifying an egress point to a network location in a data communications network comprising a plurality of nodes and links there between comprises the step, performed at the identifying node, of receiving a notification through the network advertising an adjacency to a network location. The method further comprises the steps, performed at the identifying node, of deriving from the notification adjacency information and identifying, from the adjacency information, the egress point.