-
公开(公告)号:US20240270240A1
公开(公告)日:2024-08-15
申请号:US18645748
申请日:2024-04-25
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher Gariepy , Yvan Geoffrey Rodrigues , Matthew Lord , Ivor Wanders , Jason Mercer , James Servos , Roydyn Clayton
IPC: B60W30/09 , B60W30/165 , G01C21/34 , G01C21/36
CPC classification number: B60W30/09 , B60W30/165 , G01C21/343 , G01C21/3667
Abstract: The various embodiments described herein generally relate to systems and methods for operating one or more self-driving vehicles. In some embodiments, the self-driving vehicles may include a vehicle processor being operable to: control the vehicle to navigate an operating environment in an initial vehicle navigation mode; monitor for one or more trigger conditions indicating a possible change for the vehicle navigation mode; detect a trigger condition; determine a prospective vehicle navigation mode associated with the detected trigger condition; determine whether to change from the initial vehicle navigation mode to the prospective vehicle navigation mode; and in response to determining to change from the initial vehicle navigation mode to the prospective vehicle navigation mode, adjust one or more vehicle attributes corresponding to the prospective vehicle navigation mode, otherwise continue to operate the vehicle in the initial vehicle navigation mode.
-
公开(公告)号:US20220073062A1
公开(公告)日:2022-03-10
申请号:US17470087
申请日:2021-09-09
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher Gariepy , Yvan Geoffrey Rodrigues , Matthew Lord , Ivor Wanders , Jason Mercer , James Servos , Roydyn Clayton
IPC: B60W30/09 , B60W30/165
Abstract: The various embodiments described herein generally relate to systems and methods for operating one or more self-driving vehicles. In some embodiments, the self-driving vehicles may include a vehicle processor being operable to: control the vehicle to navigate an operating environment in an initial vehicle navigation mode; monitor for one or more trigger conditions indicating a possible change for the vehicle navigation mode; detect a trigger condition; determine a prospective vehicle navigation mode associated with the detected trigger condition; determine whether to change from the initial vehicle navigation mode to the prospective vehicle navigation mode; and in response to determining to change from the initial vehicle navigation mode to the prospective vehicle navigation mode, adjust one or more vehicle attributes corresponding to the prospective vehicle navigation mode, otherwise continue to operate the vehicle in the initial vehicle navigation mode.
-
公开(公告)号:US20200172096A1
公开(公告)日:2020-06-04
申请号:US16699015
申请日:2019-11-28
Applicant: Clearpath Robotics Inc.
Inventor: Matthew Lord , Ryan Christopher Gariepy , Peiyi Chen , Michael Irvine , Alex Bencz
IPC: B60W30/095 , B60W40/105 , G05D1/00
Abstract: Systems and methods for self-driving collision prevention are presented. The system comprises a self-driving vehicle safety system, having one or more sensors in communication with a control system. The control system is configured determine safety fields and instruct the sensors to scan a region corresponding to the safety fields. The control system determines exclusion regions, and omits the exclusion regions from the safety field. The safety system may also include capability reduction parameters that can be used to constrain the drive system of the vehicle, for example, by restricting turning radius and speed in accordance with the safety fields.
-
公开(公告)号:US20170253136A1
公开(公告)日:2017-09-07
申请号:US15449441
申请日:2017-03-03
Applicant: Clearpath Robotics Inc.
Inventor: Matthew Lord , Michael Irvine , Philip Dimitri Perivolaris , Anthony Robert Shaw , Arsalan Khan , Catalin Radu Gradinaru
CPC classification number: B60L11/1818 , B60L53/11 , B60L53/16 , H01R13/24 , H01R13/6315 , H01R2201/26 , Y02T10/7005 , Y02T10/7072 , Y02T90/121 , Y02T90/128 , Y02T90/14
Abstract: An electric vehicle charging interface device is provided. The device includes a chassis having a top, a bottom, a front side, and a back side opposite the front side, the chassis configured to move between an uncompressed position and a compressed position relative to a longitudinal axis. The device further includes two electrodes extending from the front side of the chassis, and, a biasing portion configured to bias the chassis towards the uncompressed position.
-
-
-