Abstract:
A lighting apparatus includes a solid-state lighting circuit, at least one ballast connection port and at least one low-frequency blocking impedance coupling the at least one ballast connection port to the solid-state lighting circuit. In some embodiments, the at least one low-frequency blocking impedance may be configured to block a DC offset. In further embodiments, the at least one low-frequency blocking impedance may be configured to block a nominally 60 Hz frequency component. The at least one ballast connection port may include a first ballast connection port and a second ballast connection port and the at least one low-frequency blocking impedance may include a first low-frequency blocking impedance coupling the first ballast connection port to a first terminal of the solid-state lighting circuit and a second low-frequency blocking impedance coupling the second ballast connection port to a second input terminal of the solid-state lighting circuit.
Abstract:
A lighting apparatus includes a solid-state lighting circuit, at least one ballast connection port and at least one low-frequency blocking impedance coupling the at least one ballast connection port to the solid-state lighting circuit. In some embodiments, the at least one low-frequency blocking impedance may be configured to block a DC offset. In further embodiments, the at least one low-frequency blocking impedance may be configured to block a nominally 60 Hz frequency component. The at least one ballast connection port may include a first ballast connection port and a second ballast connection port and the at least one low-frequency blocking impedance may include a first low-frequency blocking impedance coupling the first ballast connection port to a first terminal of the solid-state lighting circuit and a second low-frequency blocking impedance coupling the second ballast connection port to a second input terminal of the solid-state lighting circuit.
Abstract:
An apparatus for interfacing a ballast to at least one light emitting diode (LED) includes a passive rectifier circuit and matching circuit coupled to an input port and/or an output port of the passive rectifier circuit and configured to at least partially match an impedance of the ballast.
Abstract:
A lighting apparatus includes a solid-state lighting circuit, a ballast connection port including first and second terminals and a filament-imitating impedance coupled between the first and a second terminals of the ballast connection port and to an input terminal of the solid-state lighting circuit. The filament-imitating impedance may be configured to transfer power at a nominal frequency of an output produced by the ballast and to provide an impedance between the first and second terminals of the ballast connection port that prevents shutdown of the ballast. In some embodiments, the filament-imitating impedance may vary with temperature, e.g., the filament-imitating impedance may be configured to imitate a temperature dependence of a fluorescent tube filament. The lighting apparatus may be included in a fluorescent lamp replacement lamp.
Abstract:
According to one aspect, a control system for an LED luminaire includes a dimming control circuit that develops an analog dimming command signal that is variable between zero volts and ten volts to command LED brightness. The control system further includes a modulation circuit coupled to the dimming control circuit. The modulation circuit modifies the analog dimming command signal so as to include digital data for further commanding a parameter of LED operation.