Abstract:
Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
Abstract:
The systems, devices, articles, and methods generally relate to sampling from an available probability distribution. The samples may be used to create a desirable probability distribution, for instance for use in computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems. An analog processor may operate as a sample generator, for example by: programming the analog processor with a configuration of the number of programmable parameters for the analog processor, which corresponds to a probability distribution over qubits of the analog processor, evolving the analog processor, and reading out states for the qubits. The states for the qubits in the plurality of qubits correspond to a sample from the probability distribution. Operation of the sampling device may be summarized as including updating a set of samples to include the sample from the probability distribution, and returning the set of samples.
Abstract:
A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
Abstract:
The techniques and structures described herein generally relate to sampling from an available probability distribution to create a desirable probability distribution. This resultant distribution can be used for computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems.