Abstract:
A method for processing a chemical stream includes contacting a feed stream with a catalyst in a reactor portion of a reactor system that includes a reactor portion and a catalyst processing portion. The catalyst includes platinum, gallium, or both and contacting the feed stream with the catalyst causes a reaction which forms an effluent stream. The method includes separating the effluent stream from the catalyst, passing the catalyst to the catalyst processing portion, and processing the catalyst in the catalyst processing portion. Processing the catalyst includes passing the catalyst to a combustor, combusting a supplemental fuel in the combustor to heat the catalyst, treating the heated catalyst with an oxygen-containing gas to produce a reactivated catalyst, and passing the reactivated catalyst from the catalyst processing portion to the reactor portion. The supplemental fuel may include a molar ratio of hydrogen to other combustible fuels of at least 1:1.
Abstract:
According to one or more embodiments, a fluid catalytic reactor may include a riser, a lower reactor portion, a transition portion, and a flow director. The riser may include a cross-sectional area, and the lower reactor portion may include a cross-sectional area. The transition portion may attach the riser to the lower reactor portion. The cross-sectional area of the riser may be less than the cross-sectional area of the lower reactor portion such that the transition portion is tapered inward from the lower reactor portion to the riser. The flow director may be positioned at least within an interior region of the transition portion. The flow director may include a body which affects the velocity profile of fluids moving from the lower reactor portion to the riser.
Abstract:
Increase propane dehydrogenation activity of a partially deactivated dehydrogenation catalyst by heating the partially deactivated catalyst to a temperature of at least 660° C., conditioning the heated catalyst in an oxygen-containing atmosphere and, optionally, stripping molecular oxygen from the conditioned catalyst.
Abstract:
An improved catalytic dehydrogenation process which process comprises contacting an alkane or alkyl aromatic feedstream with a dehydrogenation catalyst under catalytic conditions in an up-flow fluidized reactor, wherein the fluidized reactor comprises one or more reactors, which catalytic conditions include a temperature within a range of from 500 to 800° C., a weight hourly space velocity within a range of from 0.1 to 1000, a gas residence time within a range of from 0.1 to 10 seconds, and, subsequent to the fluidized reactor, effecting separation of entrained catalyst from reactor effluent by use of a cyclonic separation system, wherein the improvement comprises interposing a cooling means between an up-flow fluidized reactor and the cyclonic separation system to substantially halt thermal reactions, thereby effectively increasing overall molar selectivity to alkene product is provided.
Abstract:
Effect adiabatic, catalytic alkanol (alcohol) dehydration using two or more sequential dehydration catalyst beds each of which has disposed therein a different catalyst and, preferably, eliminating heating and heating apparatus disposed between each sequential pair of dehydration catalyst beds.
Abstract:
Effect adiabatic, catalytic alkanol (alcohol) dehydration using two or more sequential dehydration catalyst beds each of which has disposed therein a different catalyst and, preferably, eliminating heating and heating apparatus disposed between each sequential pair of dehydration catalyst beds.