Abstract:
A power system for connecting a power source, an energy storage unit and a grid includes a power inverter, an energy storage power converter and a controller. The power inverter is electrically coupled to the power source through a DC bus and converts DC power from the DC bus to AC power output to the grid. The power converter is electrically coupled between the DC bus and the energy storage unit and stores power in the energy storage unit and discharges power from the energy storage unit. The controller controls the power converter to store excess power from the power source that cannot be output to the grid in the energy storage unit, and control the energy storage power converter to discharge power stored in the energy storage unit to the power inverter to output to the grid.
Abstract:
A power system and method for performing a blackstart on a microgrid. The power system includes at least a first power converter and a second power converter. The first power converter comprises a first controller having a plurality of startup sequences for performing the blackstart. The second power converter is electrically coupled to the first power converter at a point of common coupling. During the blackstart, the first controller is configured to select and perform one of the plurality of startup sequences according to a point at which the second power converter is within the second power converter's startup sequence during the blackstart. The first controller selects the one of the plurality of startup sequences according to a microgrid voltage at the point of common coupling.
Abstract:
A power system for power conversion between at least one power source and a grid is disclosed. The power system includes a power converter having a plurality of semiconductor switches, configured to adapt a power supply to a desired output; and a controller for controlling the power converter in an active mode and an active standby mode, the controller configured to: determine to enter into the active mode or the active standby mode; based on the active mode or the active standby mode is determined, control the power converter to be in a gating state with the grid or to be in a non-gating state with the grid.
Abstract:
A power system having a plurality of operating modes including an active mode and an active standby mode includes a power converter and a controller the power converter is configured to adapt a power supply to a desired output, and the power converter includes a plurality of semiconductor switches that receive a gating signal when the power system is in the active mode such that the power converter is in a gating state. The controller controls the power converter in the active mode and the active standby mode, and the controller is configured to: while the power converter is synchronized to the grid, determine whether the power system should enter into the active standby mode in which the power converter is in a non-gating state; when it is determined the power system should enter into the active standby mode, control the power converter to be in a non-gating state such that the power system is in the active standby mode.