摘要:
A rotor blade assembly and a method for adjusting a loading capability of a rotor blade are disclosed. The rotor blade assembly includes a rotor blade having surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade further defines a span and a chord. The rotor blade assembly further includes a spoiler assembly operable to alter a flow past a surface of the rotor blade. The spoiler assembly is incrementally deployable from the surface along one of a length or a width of the spoiler assembly.
摘要:
A wind turbine blade includes a porous window defined in the suction side of the blade. The porous window includes a plurality of holes defined therein. An air manifold within the internal cavity of the blade is in airflow communication with the porous window. An inlet air passage in the pressure side of the blade is in communication with the air manifold. A deployable cover member is configured adjacent the porous window and is variably positionable from a fully closed position wherein airflow through the holes in the porous window is blocked to a fully open position wherein airflow is established through the holes in the porous window.
摘要:
A rotor blade assembly for a wind turbine and a method for modifying a load characteristic of a rotor blade in a wind turbine are disclosed. The rotor blade assembly includes a rotor blade having surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade further defines a span and a chord. The rotor blade includes a body defining at least a portion of the pressure side, the suction side, and the trailing edge, and a nose feature movable with respect to the body. The rotor blade assembly further includes a controller operable to move the nose feature.
摘要:
A wind turbine blade includes a porous window defined in the suction side of the blade. The porous window is permeable to airflow from within an internal cavity of the blade through the suction side. A deployable cover member is configured with the porous window and is variably positionable from a fully closed position wherein airflow through the porous window is blocked, to a fully open position wherein airflow is established through an entirety of the porous window. An actuating mechanism is disposed within the internal cavity of the blade and is configured with the cover member to move the cover member between the fully closed and fully open positions in response to a control signal.
摘要:
A wind turbine blade includes a porous window defined in the suction side of the blade. The porous window includes a plurality of holes defined therein. An air manifold within the internal cavity of the blade is in airflow communication with the porous window. An inlet air passage in the pressure side of the blade is in communication with the air manifold. A deployable cover member is configured adjacent the porous window and is variably positionable from a fully closed position wherein airflow through the holes in the porous window is blocked to a fully open position wherein airflow is established through the holes in the porous window.
摘要:
Second stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values, from 0.05 to 0.95 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of ±0.160 inches in directions normal to the surface of the airfoil.
摘要:
First stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 1 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X, Y and Z distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of ±0.055 inches in directions normal to the surface of the airfoil.