Oversampling in a Combined Transposer Filterbank

    公开(公告)号:US20190119753A1

    公开(公告)日:2019-04-25

    申请号:US16223112

    申请日:2018-12-18

    Abstract: The present invention relates to coding of audio signals, and in particular to high frequency reconstruction methods including a frequency domain harmonic transposer. A system and method for generating a high frequency component of a signal from a low frequency component of the signal is described. The system comprises an analysis filter bank (501) comprising an analysis transformation unit (601) having a frequency resolution of Δf; and an analysis window (611) having a duration of DA; the analysis filter bank (501) being configured to provide a set of analysis subband signals from the low frequency component of the signal; a nonlinear processing unit (502, 650) configured to determine a set of synthesis subband signals based on a portion of the set of analysis subband signals, wherein the portion of the set of analysis subband signals is phase shifted by a transposition order T; and a synthesis filter bank (504) comprising a synthesis transformation unit (602) having a frequency resolution of QΔf; and a synthesis window (612) having a duration of DS; the synthesis filter bank (504) being configured to generate the high frequency component of the signal from the set of synthesis subband signals; wherein Q is a frequency resolution factor with Q1 and smaller than the transposition order T; and wherein the value of the product of the frequency resolution Δf and the duration DA of the analysis filter bank is selected based on the frequency resolution factor Q.

    Oversampling in a combined transposer filterbank

    公开(公告)号:US10186280B2

    公开(公告)日:2019-01-22

    申请号:US15792956

    申请日:2017-10-25

    Abstract: The present invention relates to coding of audio signals, and in particular to high frequency reconstruction methods including a frequency domain harmonic transposer. A system and method for generating a high frequency component of a signal from a low frequency component of the signal is described. The system comprises an analysis filter bank (501) comprising an analysis transformation unit (601) having a frequency resolution of Δf; and an analysis window (611) having a duration of DA; the analysis filter bank (501) being configured to provide a set of analysis subband signals from the low frequency component of the signal; a nonlinear processing unit (502, 650) configured to determine a set of synthesis subband signals based on a portion of the set of analysis subband signals, wherein the portion of the set of analysis subband signals is phase shifted by a transposition order T; and a synthesis filter bank (504) comprising a synthesis transformation unit (602) having a frequency resolution of QΔf; and a synthesis window (612) having a duration of DS; the synthesis filter bank (504) being configured to generate the high frequency component of the signal from the set of synthesis subband signals; wherein Q is a frequency resolution factor with Q≥1 and smaller than the transposition order T; and wherein the value of the product of the frequency resolution Δf and the duration DA of the analysis filter bank is selected based on the frequency resolution factor Q.

    Harmonic transposition in an audio coding method and system

    公开(公告)号:US10043526B2

    公开(公告)日:2018-08-07

    申请号:US14881250

    申请日:2015-10-13

    Abstract: The present invention relates to transposing signals in time and/or frequency and in particular to coding of audio signals. More particular, the present invention relates to high frequency reconstruction (HFR) methods including a frequency domain harmonic transposer. A method and system for generating a transposed output signal from an input signal using a transposition factor T is described. The system comprises an analysis window of length La, extracting a frame of the input signal, and an analysis transformation unit of order M transforming the samples into M complex coefficients. M is a function of the transposition factor T. The system further comprises a nonlinear processing unit altering the phase of the complex coefficients by using the transposition factor T, a synthesis transformation unit of order M transforming the altered coefficients into M altered samples, and a synthesis window of length Ls, generating a frame of the output signal.

Patent Agency Ranking