摘要:
Embodiments of the present invention provide a method, system and computer program product for the seamless integration of an application with an in memory data grid. In an embodiment of the invention, a method for intercepting database queries from a computer program for delegation to an in memory data grid is provided. The method includes retrieving database queries from a database driver for a database management system from a requesting computer program and comparing at least a portion of each of the database queries to a listing of database queries. Thereafter, the database queries are selectively routed to a data grid, such as an in memory data grid, in lieu of the database management based upon the comparison.
摘要:
A method, system and computer program product for autonomic caching in an IMDG has been provided. A method for autonomic caching in an IMDG includes receiving from a client of the IMDG a request for a primary query in the IMDG. The method also includes associating the primary query with a previously requested sub-query related to the primary query. Finally, the method includes directing the sub-query concurrently with a directing of the primary query without waiting to receive a request for the sub-query from the client. In this way, the method can proactively predict a receipt of the request for a sub-query following a request for a primary query prior the actual receipt of the request for the sub-query.
摘要:
Systems and methods of managing an in-memory data grid (IMDG) may involve conducting a data distribution analysis of the IMDG on a periodic basis, and selecting a hash scheme from a plurality of hash schemes based on the data distribution analysis. In one example, the selected hash scheme is used to conduct a repopulation of the IMDG, wherein the repopulation increases the distribution evenness of database records across the IMDG.
摘要:
A method, system and computer program product for autonomic caching in an IMDG has been provided. A method for autonomic caching in an IMDG includes receiving from a client of the IMDG a request for a primary query in the IMDG. The method also includes associating the primary query with a previously requested sub-query related to the primary query. Finally, the method includes directing the sub-query concurrently with a directing of the primary query without waiting to receive a request for the sub-query from the client. In this way, the method can proactively predict a receipt of the request for a sub-query following a request for a primary query prior the actual receipt of the request for the sub-query.
摘要:
Systems and methods of managing an in-memory data grid (IMDG) may involve conducting a data distribution analysis of the IMDG on a periodic basis, and selecting a hash scheme from a plurality of hash schemes based on the data distribution analysis. In one example, the selected hash scheme is used to conduct a repopulation of the IMDG, wherein the repopulation increases the distribution evenness of database records across the IMDG.
摘要:
Aspects of the present invention provide an approach that evaluates a locally running image (e.g., such as that for a virtual machine (VM)) and determines if that image could run more efficiently and/or more effectively in an alternate computing environment (e.g., a cloud computing environment). Specifically, embodiments of the present invention evaluate the local (existing/target) image's actual and perceived performance, as well as the anticipated/potential performance if the image were to be migrated to an alternate environment. The anticipated/potential performance can be measured based on another image that is similar to the existing/target image but where that image is running in a different computing environment. Regardless, the system would display a recommendation to the end user if it were determined that the image could perform better in the alternate environment (or vice versa).
摘要:
Methods (600-900) for optimizing performance of systems (100, 200). The methods involve determining if a device (108, 1081, 1082, . . . , 108N) has been deployed as a standalone device or a cluster device. The determination can be based on a value of a flag stored in the device (e.g., an appliance) or contents of device registration information stored in a master device of a cluster of devices. The methods also involve automatically delegating data management operations to a centralized Memory Management System (MMS) or a distributed MMS (210) based on results of said determination. The centralized MMS (110) performs relational database management operations (e.g., SQL operations) in response to said data management operations being delegated thereto. The distributed MMS performs grid database management operations (e.g., non-SQL based operations or key-value based operations) in response to said data management operations being delegated thereto.
摘要:
Systems and methods of managing an in-memory data grid (IMDG) may involve conducting a data distribution analysis of the IMDG on a periodic basis, and selecting a hash scheme from a plurality of hash schemes based on the data distribution analysis. In one example, the selected hash scheme is used to conduct a repopulation of the IMDG, wherein the repopulation increases the distribution evenness of database records across the IMDG.
摘要:
Systems and methods of managing an in-memory data grid (IMDG) may involve conducting a data distribution analysis of the IMDG on a periodic basis, and selecting a hash scheme from a plurality of hash schemes based on the data distribution analysis. In one example, the selected hash scheme is used to conduct a repopulation of the IMDG, wherein the repopulation increases the distribution evenness of database records across the IMDG.
摘要:
Methods (600-900) for optimizing performance of systems (100, 200). The methods involve determining if a device (108, 1081, 1082, . . . , 108N) has been deployed as a standalone device or a cluster device. The determination can be based on a value of a flag stored in the device (e.g., an appliance) or contents of device registration information stored in a master device of a cluster of devices. The methods also involve automatically delegating data management operations to a centralized Memory Management System (MMS) or a distributed MMS (210) based on results of said determination. The centralized MMS (110) performs relational database management operations (e.g., SQL operations) in response to said data management operations being delegated thereto. The distributed MMS performs grid database management operations (e.g., non-SQL based operations or key-value based operations) in response to said data management operations being delegated thereto.