Abstract:
Provided is a motor driving device. The motor driving device includes a motor controller configured to output a first phase signal, a second phase signal, and a third phase signal on the basis of an angle signal, a gate driver configured to output a first phase control signal, a second phase control signal, and a third phase control signal to an external motor on the basis of the first phase signal, the second phase signal, and the third phase signal, respectively, a current sensor configured to detect a first phase current signal, a second phase current signal, and a third phase current signal from the first phase control signal, the second phase control signal, and the third phase control signal, and a sensorless calculation circuit configured to calculate a current calculation signal using the first phase current signal, the second phase current signal, and the third phase current signal, to calculate a voltage calculation signal using the first phase signal and the second phase signal, and to calculate the angle signal using the current calculation signal and the voltage calculation signal.
Abstract:
Provided is a motor driving module for controlling a motor including a rotator and a stator, which includes a motor driving unit controlling a plurality of voltages applied to the motor on a basis of a position signal indicating a position of the rotator in response to an external control signal, an analog-to-digital converter detecting a plurality of phase currents applied to the motor to output a plurality of phase current signals, and a position estimating unit detecting the rotator position to output the position signal on a basis of the plurality of phase current signals, and a position calculating unit detecting the rotator position to output the position signal on a basis of the plurality of synchronized phase current signals.
Abstract:
Provided is a BrushLess Direct Current (BLDC) motor system including a motor driving circuit configured to control a pulse-width-modulation (PWM) inverter in a first operation mode or a second operation mode according to a control signal, and output a switching signal according to each operation mode, the PWM inverter configured to receive the switching signal to output first three-phase voltages having a first frequency in the first operation mode, and output second three-phase voltages having a second frequency in the second operation mode, a sensorless BLDC motor configured not to operate in the first operation mode by operating based on three-phase voltages having a frequency in a different band from the first frequency, and operate in the second mode by operating based on three-phase voltages having a frequency in an identical band to the second frequency, and a parameter detecting circuit configured to calculate parameter information on the sensorless BLDC motor in the first operation mode by using sensing voltages sensed in the PWM inverter.