Abstract:
Provided is a lithium battery including a first electrode structure, a second electrode structure spaced apart from the first electrode structure, and an electrolyte between the first electrode structure and the second electrode structure, wherein the electrolyte includes a lithium salt, an organic solvent, and an additive, wherein the additive includes a coordination compound catalyst represented by Formula 1.
TMX.yH2O [Formula 1]
n Formula 1, TM is a +2-valent transition metal cation, y is an integer of 0 to 6, and X is a −2-valent ligand containing an aromatic ring.
Abstract:
A lithium battery according to the inventive concept includes: a first electrode structure; a second electrode structure separated from the first electrode structure; and an electrolyte between the first electrode structure and the second electrode structure, wherein the electrolyte includes: a lithium salt; an organic solvent; and an additive, the additive includes a polymer additive, and the polymer additive may be a mixture of at least two or more polymers among a halogen-based polymer, a silicon-based polymer and an acrylic polymer, or a copolymer thereof.
Abstract:
Provided is a composite electrode for an all-solid-state secondary battery including a first active material and a second active material, wherein the first active material and the second active material include different materials from each other, and the content of the first active material is 50 vol % to 98 vol % based on the total volume of the first active material and the second active material, the first active material has a volume change rate of 0 vol % to 30 vol % according to volume expansion/contraction during a charging/discharging process, and the second active material has a volume change rate of 35 vol % to 1000 vol % according to volume expansion/contraction during a charging/discharging process.
Abstract:
Provided is a battery module and an electronic device, the battery module including a first battery, a second battery, a correcting element unit, and a battery controller, wherein the first battery includes a first internal resistance and provides a first current, the second battery is connected to the first battery, includes a second internal resistance and provides a second current, the correction element unit is connected to the first battery or the second battery and includes a variable resistor or a current source, the battery controller controls the correction element unit such that the first current is identical to the second current on a basis of a difference between values of the first internal resistance and the second internal resistance, and therefore performances of the first battery and the second battery are prevented from being deteriorated.
Abstract:
Provided is a motor position detecting unit that includes a first computing element configured to output three-phase back-electromotive foreces (back-EMFs) based on a linear computation; a second computing element configured to output three-phase back-EMF based on a non-linear computation; and a computing controller configured to receive a control signal, three-phase voltage and current, and selecting any one of the first and second computing elements based on the received control signal, the received three-phase voltages and currents, wherein the control signal includes information on operation modes of an external motor.
Abstract:
The present disclosure relates to an all-solid-state secondary battery, and more particularly, to an all-solid-state secondary battery including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode. Here, at least one of the positive electrode and the negative electrode includes a sulfide-based active material, the sulfide-based active material has a particle size of about 50 nm to about 5 µm, and the sulfide-based active material has a grain size of about 1 nm to about 10 nm.
Abstract:
Provided are a DC-DC converter driving device and a driving method thereof, the DC-DC converter driving device including an error detector configured to compare a first feedback voltage corresponding to a first output terminal with a first compensation reference voltage to generate a first error voltage, and configured to compare a second feedback voltage corresponding to a second output terminal with a second compensation reference voltage to generate a second error voltage, an interference detector configured to determine interference between the first and second output terminals on the basis of the first and second error voltages to generate an interference error voltage, and a reference voltage compensator configured to assign a weight to the interference error voltage to generate the first and second compensation reference voltages, and thus priorities are determined for outputs of the DC-DC converter and weights according thereto are assigned to reduce occurrence of cross-regulation.
Abstract:
Provided is a motor driving circuit which transmits a driving signal to a motor, including a gate driver generating the driving signal corresponding to a pulse width modulation signal, a pulse width modulation signal generator generating the pulse width modulation signal according to Hall sensor signals received from Hall sensors mounted in the motor, a current sensor measuring a link current provided to the gate driver, a low pass filter outputting a filter current that high frequency components are removed from the measured link current, and a minimum power consumption estimating unit generating a lead angle according to a start signal with reference to the filter current, wherein the pulse with modulating signal is changed according to the lead angle.
Abstract:
Provided is a motor including a motor driving unit outputting a plurality of switching signals and any one of estimated three-phase voltages, in response to a control signal and a compensated position signal; a pulse width modulation (PWM) inverter outputting three-phase voltages and any one of estimated three-phase currents corresponding to the one estimated phase voltage, in response to the plurality switching signals; a motor unit operating based on the three-phase voltages and outputting a position signal according to the operation; and a position signal compensation unit receiving the position signal, the estimated phase voltage and the estimated phase current, detecting a phase difference between the estimated phase voltage and the estimated phase current and compensating for the position signal in response to the detected phase difference.
Abstract:
Disclosed is a battery residual value evaluation system, which includes a measurement unit that measures a voltage and a current of an external battery to generate a voltage signal and a current signal, a resistance calculation unit that generates a resistance value, a resistance change value, and a resistance change rate of the external battery for each of charging and discharging cycles of the external battery based on the voltage signal and the current signal, an external input unit that receives reference ranges from an outside, a determination unit that determines a battery residual value based on whether the resistance value, the resistance change value, and the resistance change rate fall within the reference ranges, respectively, and an output unit that outputs the determination result to the outside.