Abstract:
A method and apparatus for automating validation and verification of computer software that confirms during a test execution of the software that all lines of code are executed and all branches in the software are taken or not taken at least once. The computer software to be tested is compiled and a link map is generated. After compilation of the code, it is run in a test fixture to test all the required functions. During this test execution, a monitoring process is performed which documents which lines of code have been executed and whether certain branches of the code were either taken or not taken. An execution record is generated which indicates what instruction branches were taken and were not taken. A comparison is then made between the link map originally generated and the instruction record generated to determine what lines of code were executed, whether each branch was taken at least once, and whether a branch was not taken at least once.
Abstract:
A cross-channel data link for interconnecting a plurality of computers together in a ring configuration using a single optical fiber between adjacent communication nodes includes wavelength division multiplexing circuitry in a way that improves the fault diagnostic capabilities of the system. By using a particular transmission protocol in which optical data representing signals of two discrete wavelengths are fed through a single optical fiber with one progressing in the clockwise direction and the other in a counterclockwise direction in two recurring time frames, at the conclusion each of the computers is guaranteed to have identical data irrespective of any single point failure in the data link.
Abstract:
A launch and capture system for capturing a vertical take-off and landing (VTOL) vehicle having a thruster and a duct configured to direct airflow generated by the thruster includes a capture plate and an extension. The capture plate is configured to alter the airflow and generate a force attracting the duct to the capture plate. The extension is coupled to the capture plate, and is configured to at least facilitate holding the VTOL vehicle against the capture plate.
Abstract:
The present invention provides apparatus and methods for accurate guidance of small munitions to a target. The guidance for the small munition is mainly provided by a device external to the small munition, such as an unmanned aerial vehicle (UAV). The UAV may provide external guidance commands by use of a command transmitter to the small munition. The small munition is equipped to receive the guidance commands and consequently use a maneuvering mechanism to react to the guidance commands. The UAV may determine a successful release point of the small munition and track a flight path from a release point toward the target of the small munition using a passive sensor mounted in a gimbaled mount, which is controlled by use of a closed-loop control system. The UAV may be controlled by a ground control device, such as an operator control unit (OCU), to release small munitions.
Abstract:
An air data system and method for a ducted fan air-vehicle is described. The air data system includes a plurality of air pressure sensors placed around a lip of an air duct of the ducted fan air-vehicle. The air data system calculates the speed and direction of airflow surrounding the ducted fan air-vehicle based on pressure data measured across the lip of the air duct. Additionally, the air data system may estimate forces generated by airflow surrounding the air-vehicle.
Abstract:
A system for illuminating an object of interest includes a platform and a gimbaled sensor associated with an illuminator. The gimbaled sensor provides sensor data corresponding to a sensed condition associated with an area. The gimbaled sensor is configured to be articulated with respect to the platform. A first transceiver transceives communications to and from a ground control system. The ground system includes an operator control unit allowing a user to select and transmit to the first transceiver at least one image feature corresponding to the object of interest. An optical transmitter is configured to emit a signal operable to illuminate a portion of the sensed area proximal to the object of interest. A correction subsystem is configured to determine an illuminated-portion-to-object-of-interest error and, in response to the error determination, cause the signal to illuminate the object of interest.
Abstract:
A Micro Air-Vehicle (MAV) starting system that provides the combined functions of: packing protection of sensitive vehicle components, a mechanical starting assembly, and a launch pad. The preferred embodiment comprises a container and a container lid with the MAV clamped to the lid. Also disposed on the container lid is a starting assembly. The lid which doubles as a launching pad with the attached MAV is removed from the container, placed on the ground, the MAV is started with the starting mechanism and launched. The arrangement minimizes the physical risk to the operator, minimizes weight of the total MAV system, consumes minimum space in the operators transport system, and eliminates dependence on supply lines for battery replacement or charging.
Abstract:
Reflective movable mirrors are used to reflect an image from a desired direction into the lens of a camera. This apparatus is preferably used with infrared (IR) cameras. To capture images from different directions, the orientations of the mirrors are modified. The mirrors are light, requiring only miniature motors and actuators for moving them. The mirrors are also much smaller than the focal plane electronics and the IR lens, requiring much less space for moving them than would be required for moving the camera. This provides a pointing capability for an airframe-fixed IR camera and this capability is provided with minimum additional payload, space and power requirements. The apparatus and method can be used for IR and electro-optical (EO) cameras.
Abstract:
The present invention provides a catch and snare system for an unmanned aerial vehicle comprising: (a) a detection system, (b) a deployment system in communication with the detection system, (c) a capture system placed at an interference position by the deployment system, wherein the capture system comprises a net, a plurality of foam deploying canisters attached to the net for deploying foam, and at least one canister for deploying a decelerating parachute attached to the net, wherein the foam prevents the release of chemical or biological agents from the captured unmanned aerial vehicle, and (d) a descent system to bring the capture system and a captured unmanned aerial vehicle back to earth.
Abstract:
Systems and methods for inertially controlling a hovering unmanned aerial vehicle (HUAV) are provided. One inertial controller includes a frame and a sensor for detecting a change in an orientation and/or motion of the frame with respect to a predetermined neutral position. The inertial controller also includes a processor for generating commands to the HUAV to modify its current orientation and/or motion in accordance with the change. A system includes the above inertial controller and a sensor for determining a second change for an orientation and/or motion for the HUAV based on the change, and a processor for generating a signal commanding an HUAV control system to orient and/or move the HUAV in accordance with the second change. One method includes detecting a change in an orientation and/or motion of an inertial controller frame and commanding the HUAV to modify its current orientation and/or motion in accordance with the change.