-
公开(公告)号:US20210230478A1
公开(公告)日:2021-07-29
申请号:US17147631
申请日:2021-01-13
Applicant: ExxonMobil Research and Engineering Company
Inventor: Fang Cao , Yao Xiong , James D. Oxley , Wei Li , Satish Bodige , Abhimanyu O. Patil , Harry W. Deckman
Abstract: Particulate compositions including a plurality of particles containing oil field chemicals encapsulated in a water soluble, water swellable, or water degradable matrix material are disclosed. The oil field chemicals may be corrosion inhibitors and the particulate composition may be prepared by spray drying mixtures of matrix material and oil field chemicals. The particulate compositions are designed to efficiently deliver the chemicals to the water phase of a multiphase environment, such as an oil/water environment.
-
公开(公告)号:US10883965B2
公开(公告)日:2021-01-05
申请号:US16165090
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling , Joseph W. Krynicki , Jamey A. Fenske
Abstract: For method of utilizing a nondestructive evaluation method to inspect a steel material comprising at least one hysteretic ferromagnetic material and/or at least one nonhysteretic material to identify one or more material conditions and/or one or more inhomogeneities in steel material, the method can comprise the steps of: interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field; scanning the steel material and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material; determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response; and correlating the time dependent nonlinear characteristic of the received magnetic response and/or acoustic response to the one or more material conditions and/or one or more inhomogeneities in steel material.
-
公开(公告)号:US20190145931A1
公开(公告)日:2019-05-16
申请号:US16164955
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling
IPC: G01N27/82
Abstract: A device for detecting one or more material qualities of a sample composed of at least one hysteretic magnetic material includes a magnet configured to provide a DC magnetic field which has a spatially varying magnetic field in at least a portion of the regions of interest, two or more suitable sensors disposed at locations with different magnetic field strengths in the regions of interest configured to receive magnetic responses. The device can also include a processor, configured to execute a method, the method comprising recording magnetic responses from two or more suitable sensors disposed at the said different locations, and correlating all the said received magnetic responses to one or more material qualities of the said sample composed of at least one hysteretic ferromagnetic material.
-
公开(公告)号:US10259711B2
公开(公告)日:2019-04-16
申请号:US15465666
申请日:2017-03-22
Applicant: ExxonMobil Research and Engineering Company
Inventor: Ramesh Gupta , Robert A. Johnson , Thomas N. Anderson , Harry W. Deckman , Peter I. Ravikovitch
IPC: B01D53/047 , B01D53/06 , C01B13/02
Abstract: Systems and methods are provided for separating oxygen from air using a sorption/desorption cycle that includes a reduced or minimized difference between the maximum and minimum pressures involved in the sorption/desorption cycle. The reduced or minimized difference in pressures can be achieved in part by using valves that can allow for commercial scale flow rates while avoiding large pressure drops for flows passing through the valves. A rotary wheel adsorbent is an example of a system that can allow for a sorption/desorption cycle with reduced and/or minimized pressure drops across valves associated with the process. Stationary adsorbent beds can also be used in combination with commercially available valves that have reduced and/or minimized pressure drops.
-
公开(公告)号:US20210138446A1
公开(公告)日:2021-05-13
申请号:US17061886
申请日:2020-10-02
Applicant: ExxonMobil Research and Engineering Company
Inventor: William A. Lamberti , William C. Horn , Corrine L. Brandl , Harry W. Deckman
Abstract: Particulate compositions, especially particulate compositions which are designed to be processed or transferred, are provided. The particulate compositions contain parent particles and composite particles, the composite particles being composed of a binder and fine parent particles. The particulate compositions have a low proportion of free fine parent particles and provide advantages where processing or transferring of the particulate compositions is practiced.
-
公开(公告)号:US20190145934A1
公开(公告)日:2019-05-16
申请号:US16165024
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling
CPC classification number: G01N27/9033 , G01N27/72 , G01N27/82 , G01N27/9046 , G01N29/04 , G01N29/2412
Abstract: A method for determining one or more material conditions of a hysteretic ferromagnetic material and/or a nonhysteretic material can include interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material. The method can also include determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response and correlating the time dependent nonlinear characteristic of the received magnetic response or acoustic response to one or more material conditions of the material.
-
公开(公告)号:US20170305744A1
公开(公告)日:2017-10-26
申请号:US15465666
申请日:2017-03-22
Applicant: ExxonMobil Research and Engineering Company
Inventor: Ramesh Gupta , Robert A. Johnson , Thomas N. Anderson , Harry W. Deckman , Peter I. Ravikovitch
CPC classification number: C01B13/027 , B01D53/047 , B01D53/06 , B01D2253/108 , B01D2253/342 , B01D2256/12 , B01D2257/102 , B01D2257/40 , B01D2259/4003 , B01D2259/40052 , C01B2210/0018 , C01B2210/0046 , C01P2006/80
Abstract: Systems and methods are provided for separating oxygen from air using a sorption/desorption cycle that includes a reduced or minimized difference between the maximum and minimum pressures involved in the sorption/desorption cycle. The reduced or minimized difference in pressures can be achieved in part by using valves that can allow for commercial scale flow rates while avoiding large pressure drops for flows passing through the valves. A rotary wheel adsorbent is an example of a system that can allow for a sorption/desorption cycle with reduced and/or minimized pressure drops across valves associated with the process. Stationary adsorbent beds can also be used in combination with commercially available valves that have reduced and/or minimized pressure drops.
-
-
-
-
-
-