Abstract:
A low transition temperature mixture (LTTM) or deep eutectic solvent (DES) useful as a lubricating oil base stock and lubricating oil including a eutectic mixture of at least a first component and at least a second component. The at least first component comprises a hydrogen bond acceptor and the at least second component comprises a hydrogen bond donor. The eutectic mixture includes an equilibrium phase between the at least first component and the at least second component. The equilibrium phase does not exhibit physical characteristics of the at least first component in an unmixed state and the at least second component in an unmixed state. The at least first component and the at least second component form an intermolecular interaction between each other sufficient to prevent crystallization of the at least first component and the at least second component in the eutectic mixture. The eutectic mixture is a liquid at 20° C.
Abstract:
A composition including one or more monomethyl ester compounds represented by the formula: R1 is a monomethyl branched C15 to C19 alkyl group and R2 is an unsubstituted C2 to C30 linear alkyl group. The composition has a viscosity (Kv100) from 1 cSt to 10 cSt at 100° C. as determined by ASTM D445, a viscosity index (VI) from −100 to 300 as determined by ASTM D2270, a pour point from 0° C. to −50° C. as determined by ASTM D97, and a Noack volatility of no greater than 50 percent as determined by ASTM D5800. A process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method for improving one or more of cold flow properties, thermal and oxidative stability, solubility and dispersancy of polar additives, deposit control and traction control in a lubricating oil by using as the lubricating oil a formulated oil containing the composition.
Abstract:
A composition that includes one or more compounds represented by the formula R1—O—R2 wherein R1 is a substituted or unsubstituted aryl or polyaryl group having from about 4 to about 40 carbon atoms, and R2 is a substituted or unsubstituted, linear or branched, alkyl group having from about 4 to about 40 carbon atoms. The composition has a viscosity (Kv100) from about 1 to about 10 cSt at 100° C. as determined by ASTM D-445, a viscosity index (VI) from about −100 to about 300 as determined by ASTM D-2270, and a Noack volatility of no greater than 50 percent as determined by ASTM D-5800. The disclosure also relates to a process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method of reducing boundary friction and improving dispersancy of polar additives of a lubricating oil by using as the lubricating oil a formulated oil containing the composition.
Abstract:
This disclosure provides low viscosity, low volatility aryl ether compounds represented by the formula: This disclosure also provides processes for producing the aryl ether compounds, lubricating oil basestocks and lubricating oils containing one or more of the aryl ether compounds, and a method for improving one or more of solubility and dispersancy of polar additives and/or sludge in a lubricating oil by using as the lubricating oil a formulated oil containing one or more of the aryl ether compounds.
Abstract:
A lubricating oil base stock including one or more monoesters represented by the formula (I), (II), (III) and (IV) as defined herein. The lubricating oil base stock has a high temperature high shear (HTHS) viscosity of less than about 1.7 cP as determined by ASTM D4683, and a Noack volatility from about 15 to about 90 percent as determined by ASTM D5800. A lubricating oil containing the lubricating oil base stock including one or more monoesters represented by the formula (I), (II), (III) and (IV) as defined herein. A method for improving one or more of thermal and oxidative stability, solubility and dispersancy of polar additives, deposit control and traction control in a lubricating oil by using as the lubricating oil a formulated oil containing the lubricating oil base stock including one or more monoesters represented by the formula (I), (II), (III) and (IV) as defined herein.
Abstract:
A composition that includes one or more compounds represented by the formula (R1)a(X)(R2)b wherein R1 and R2 are the same or different and are the residue of an alkyl group having from about 4 to about 40 carbon atoms, X is the residue of at least one polycyclic, heteroatom-containing, hydrocarbon compound, a is a value from 1 to about 8, and b is a value from 0 to about 8. The composition has a viscosity (Kv100) from about 2 to about 300 at 100° C. as determined by ASTM D-445, and a viscosity index (VI) from about −100 to about 300 as determined by ASTM D-2270. The disclosure also relates to a process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method for improving oxidative stability of a lubricating oil by using as the lubricating oil a formulated oil containing the composition.
Abstract:
A composition that includes one or more compounds represented by the formula A(B)x wherein A is the residue of an aromatic compound, B is the residue of an unsaturated hydrocarbon ester, and x is a value of 1 or greater. The composition has a viscosity (Kv100) from 2 to 40 at 100° C., and a viscosity index (VI) from 100 to 200. The disclosure also relates to a process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method for improving one or more of solubility and dispersancy of polar additives in a lubricating oil by using as the lubricating oil a formulated oil containing the composition. The lubricating oils containing the composition are advantageous as engine oils that can improve engine fuel efficiency.
Abstract:
The present disclosure relates to surfactants formed from sulfonation of aromatic ethers. The example surfactant composition may include a sulfonated aromatic ether. The sulfonated aromatic ether may include an aromatic ring with substituents comprising an ether group and a sulfonic acid group or a salt of the sulfonic acid group. The ether group may be represented by the following formula: wherein R1 is a linear or branched alkyl group having from 1 carbon atom to 20 carbon atoms; wherein each R2 is individually a hydrogen or an alkyl group having from 1 carbon atom to 4 carbon atoms; and wherein n is a value from 0 to 8.
Abstract:
A composition including one or more monomethyl ester compounds represented by the formula: R1 is a monomethyl branched C15 to C19 alkyl group and R2 is an unsubstituted C2 to C30 linear alkyl group. The composition has a viscosity (Kv100) from 1 cSt to 10 cSt at 100° C. as determined by ASTM D445, a viscosity index (VI) from −100 to 300 as determined by ASTM D2270, a pour point from 0° C. to −50° C. as determined by ASTM D97, and a Noack volatility of no greater than 50 percent as determined by ASTM D5800. A process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method for improving one or more of cold flow properties, thermal and oxidative stability, solubility and dispersancy of polar additives, deposit control and traction control in a lubricating oil by using as the lubricating oil a formulated oil containing the composition.
Abstract:
A composition that includes one or more compounds represented by the formula R1—O—R2 wherein R1 is a substituted or unsubstituted aryl or polyaryl group having from about 4 to about 40 carbon atoms, and R2 is a substituted or unsubstituted, linear or branched, alkyl group having from about 4 to about 40 carbon atoms. The composition has a viscosity (Kv100) from about 1 to about 10 cSt at 100° C. as determined by ASTM D-445, a viscosity index (VI) from about −100 to about 300 as determined by ASTM D-2270, and a Noack volatility of no greater than 50 percent as determined by ASTM D-5800. The disclosure also relates to a process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method of reducing boundary friction and improving dispersancy of polar additives of a lubricating oil by using as the lubricating oil a formulated oil containing the composition.