-
公开(公告)号:US20190145934A1
公开(公告)日:2019-05-16
申请号:US16165024
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling
CPC classification number: G01N27/9033 , G01N27/72 , G01N27/82 , G01N27/9046 , G01N29/04 , G01N29/2412
Abstract: A method for determining one or more material conditions of a hysteretic ferromagnetic material and/or a nonhysteretic material can include interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material. The method can also include determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response and correlating the time dependent nonlinear characteristic of the received magnetic response or acoustic response to one or more material conditions of the material.
-
公开(公告)号:US10823701B2
公开(公告)日:2020-11-03
申请号:US16165024
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling
Abstract: A method for determining one or more material conditions of a hysteretic ferromagnetic material and/or a nonhysteretic material can include interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material. The method can also include determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response and correlating the time dependent nonlinear characteristic of the received magnetic response or acoustic response to one or more material conditions of the material.
-
公开(公告)号:US20200231769A1
公开(公告)日:2020-07-23
申请号:US16739897
申请日:2020-01-10
Applicant: ExxonMobil Research and Engineering Company
Inventor: Ning Ma , Neeraj S. Thirumalai , Srinivasan Rajagopalan , Jevan Furmanski
Abstract: The present disclosure relates to metal/polymer hybrid materials, and methods for fabricating such, with strong bonding between the metals and polymers and improved properties. The articles of manufacture disclosed herein can include a metallic material and a polymer material bonded to the metallic material via a cocontinuous interface that provides for strong bonding between the metallic material and the polymer material.
-
公开(公告)号:US20190145933A1
公开(公告)日:2019-05-16
申请号:US16164976
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling , Joseph W. Krynicki , Jamey A. Fenske
IPC: G01N27/90
Abstract: Provided is a method of utilizing a nondestructive evaluation method to inspect/screen steel components (like plates), steel metal pipes, and seam welds and girth welds of the pipes to identify material phases and assess material qualities. The method includes: providing a DC magnetic field from a magnet to a steel plate, pipe, or weld composed of at least one hysteretic ferromagnetic material followed by scanning the plate, pipe, or weld and recording magnetic responses from two or more suitable sensors disposed at locations with different magnetic field strengths in the regions of interest configured to receive magnetic responses; and correlating all the said received magnetic responses to one or more material qualities and/or material phases of the plate, pipe, or weld. The one or more material qualities includes regions of higher hardness, regions of metal loss, regions of surface cracks, amount of undesirable phases, and combinations thereof.
-
公开(公告)号:US20190383784A1
公开(公告)日:2019-12-19
申请号:US16430832
申请日:2019-06-04
Applicant: ExxonMobil Research and Engineering Company
Inventor: Joseph W. Krynicki , Neeraj S. Thirumalai , Lujian Peng
IPC: G01N33/207
Abstract: A pipeline inspection assembly includes a test pipe including at least one weld and one or more synthetic weld flaws, and a pipeline inspection device mountable to the test pipe and movable relative thereto. The pipeline inspection device includes a detection device operable to detect the one or more synthetic weld flaws as the pipeline inspection device moves along a length of the test pipe. A performance of the pipeline inspection device is assessed based on a comparison of a detected characteristic of the one or more synthetic weld flaws and a known characteristic of the one or more synthetic weld flaws.
-
公开(公告)号:US20200232592A1
公开(公告)日:2020-07-23
申请号:US16739755
申请日:2020-01-10
Applicant: ExxonMobil Research and Engineering Company
Inventor: Ning Ma , Jevan Furmanski , Neeraj S. Thirumalai , Jeffrey M. Grenda
IPC: F16L58/08 , B29C64/268 , B29C64/153 , B23K26/20 , B23K26/70
Abstract: A method for repairing defects on a structure is disclosed herein. The method comprises use of an additive manufacturing head to inject a flowable filler material into the defect. In certain embodiments, the additive manufacturing head can be a laser metal deposition (LMD) head comprising a powder nozzle and a laser. The structure can be, e.g., a pipeline or a pressure vessel used in petroleum, petrochemical, or natural gas applications.
-
公开(公告)号:US20190145932A1
公开(公告)日:2019-05-16
申请号:US16165090
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling , Joseph W. Krynicki , Jamey A. Fenske
Abstract: For method of utilizing a nondestructive evaluation method to inspect a steel material comprising at least one hysteretic ferromagnetic material and/or at least one nonhysteretic material to identify one or more material conditions and/or one or more inhomogeneities in steel material, the method can comprise the steps of: interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field; scanning the steel material and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material; determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response; and correlating the time dependent nonlinear characteristic of the received magnetic response and/or acoustic response to the one or more material conditions and/or one or more inhomogeneities in steel material.
-
公开(公告)号:US10883965B2
公开(公告)日:2021-01-05
申请号:US16165090
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling , Joseph W. Krynicki , Jamey A. Fenske
Abstract: For method of utilizing a nondestructive evaluation method to inspect a steel material comprising at least one hysteretic ferromagnetic material and/or at least one nonhysteretic material to identify one or more material conditions and/or one or more inhomogeneities in steel material, the method can comprise the steps of: interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field; scanning the steel material and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material; determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response; and correlating the time dependent nonlinear characteristic of the received magnetic response and/or acoustic response to the one or more material conditions and/or one or more inhomogeneities in steel material.
-
公开(公告)号:US20190145931A1
公开(公告)日:2019-05-16
申请号:US16164955
申请日:2018-10-19
Applicant: ExxonMobil Research and Engineering Company
Inventor: Lang Feng , Qiuzi Li , Harry W. Deckman , Paul M. Chaikin , Neeraj S. Thirumalai , Shiun Ling
IPC: G01N27/82
Abstract: A device for detecting one or more material qualities of a sample composed of at least one hysteretic magnetic material includes a magnet configured to provide a DC magnetic field which has a spatially varying magnetic field in at least a portion of the regions of interest, two or more suitable sensors disposed at locations with different magnetic field strengths in the regions of interest configured to receive magnetic responses. The device can also include a processor, configured to execute a method, the method comprising recording magnetic responses from two or more suitable sensors disposed at the said different locations, and correlating all the said received magnetic responses to one or more material qualities of the said sample composed of at least one hysteretic ferromagnetic material.
-
-
-
-
-
-
-
-