Abstract:
Systems and methods are provided for regenerating a bed containing absorbed and/or adsorbed CO2 using a low value steam stream. The steam stream can have a pressure of 10 kPa-a to 50 kPa-a and a temperature of 46° C. to 81° C. The steam stream can be used to displace CO2 from the bed, resulting in formation of a low pressure stream including water vapor and CO2. The stream containing water vapor and CO2 is then passed through a liquid ring pump that includes an associated ring cooler. The ring pump provides the suction necessary to draw the low value steam stream through the bed to displace the CO2. Due to the nature of operation of the liquid ring pump, the majority of water in the steam containing H2O and CO2 can be removed within the liquid ring pump, resulting in production of a stream comprising 90 vol % or more of CO2 at a pressure of 90 kPa-a or more. An example of a bed that can be regenerated using a low value steam stream is a bed that corresponds to a liquid amine that is coated on/covering/impregnated into a porous solid, so that the liquid amine remains substantially in place during a cycle of sorption and desorption of CO2.
Abstract:
Described herein are methods, systems, and techniques relating to clathrate hydrate formation processes and, particularly, involving reactive metal nucleation substrates for promoting clathrate hydrate formation. The disclosed methods, systems, and techniques allow for improved nucleation rate and yield of clathrate hydrates. In some cases, the disclosed methods, systems, and techniques can also improve or reduce the amount of time needed for obtaining a given quantity of clathrate hydrate phase, for example, in desalination, gas separation and/or gas sequestration processes. The reactive metal nucleation substrate may include reactive metals from Group II, Group I, or Group XIII of the periodic table, for example, in alloyed form with other metals and/or nonmetal elements.
Abstract:
Systems and methods are provided for operating molten carbonate fuel cells to allow for periodic regeneration of the fuel cells while performing elevated CO2 capture. In some aspects, periodic regeneration can be achieved by shifting the location within the fuel cells where the highest density of alternative ion transport is occurring. Such a shift can result in a new location having a highest density of alternative ion transport, while the previous location can primarily transport carbonate ions. Additionally or alternately, periodic regeneration can be performed by modifying the input flows to the fuel cell and/or relaxing the operating conditions of the fuel cell to reduce or minimize the amount of alternative ion transport.
Abstract:
Molten carbonate fuel cell configurations are provided that include one or more baffle structures within the cathode gas collection volume. The baffle structures can reduce the unblocked flow cross-section of the cathode gas collection volume by 10% to 80%. It has been discovered that when operating a molten carbonate fuel cell under conditions for elevated CO2 utilization, the presence of baffles can provide an unexpected benefit in the form of providing increased transference and/or increased operating voltage.
Abstract:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell at increased fuel utilization and/or increased CO2 utilization. This can be accomplished in part by performing an effective amount of an endothermic reaction within the fuel cell stack in an integrated manner. This can allow for a desired temperature differential to be maintained within the fuel cell.
Abstract:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell, such as a fuel cell assembly, with increased production of syngas while also reducing or minimizing the amount of CO2 exiting the fuel cell in the cathode exhaust stream. This can allow for improved efficiency of syngas production while also generating electrical power.
Abstract:
In various aspects, systems and methods are provided for integrating molten carbonate fuel cells with a fired heater for production of electrical power while also reducing or minimizing the amount of CO2 present in the flue gas generated by the fired heater. The molten carbonate fuel cells can be integrated for use with fired heater so that at least a portion of the flue gas from fired heater flows through cathodes of the fuel cells and at least a portion of the cathode exhaust is returned to a convection section of the fired heater.