Abstract:
A fuel cell is provided including an anode configured to receive, and allow to pass through, an anode process gas, a cathode configured to receive, and allow to pass through, a cathode process gas, and an electrolyte matrix layer separating the anode and the cathode. One of the anode or the cathode has an extended edge seal chamber, and the fuel cell is configured to receive the anode process gas and the cathode process gas in substantially perpendicular directions relative to each other, and the extended edge seal chamber is configured to allow the anode process gas and the cathode process gas to pass through the anode and the cathode in substantially parallel flow paths.
Abstract:
In various aspects, systems and methods are provided for integrating molten carbonate fuel cells with a fired heater for production of electrical power while also reducing or minimizing the amount of CO2 present in the flue gas generated by the fired heater. The molten carbonate fuel cells can be integrated for use with fired heater so that at least a portion of the flue gas from fired heater flows through cathodes of the fuel cells and at least a portion of the cathode exhaust is returned to a convection section of the fired heater.
Abstract:
Systems and methods are provided for incorporating molten carbonate fuel cells into a heat recovery steam generation system (HRSG) for production of electrical power while also reducing or minimizing the amount of CO2 present in the flue gas exiting the HRSG. An optionally multi-layer screen or wall of molten carbonate fuel cells can be inserted into the HRSG so that the screen of molten carbonate fuel cells substantially fills the cross-sectional area. By using the walls of the HRSG and the screen of molten carbonate fuel cells to form a cathode input manifold, the overall amount of duct or flow passages associated with the MCFCs can be reduced.
Abstract:
Systems and methods are provided for operating molten carbonate fuel cells to allow for periodic regeneration of the fuel cells while performing elevated CO2 capture. In some aspects, periodic regeneration can be achieved by shifting the location within the fuel cells where the highest density of alternative ion transport is occurring. Such a shift can result in a new location having a highest density of alternative ion transport, while the previous location can primarily transport carbonate ions. Additionally or alternately, periodic regeneration can be performed by modifying the input flows to the fuel cell and/or relaxing the operating conditions of the fuel cell to reduce or minimize the amount of alternative ion transport.
Abstract:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell, such as a fuel cell assembly, with increased production of syngas while also reducing or minimizing the amount of CO2 exiting the fuel cell in the cathode exhaust stream. This can allow for improved efficiency of syngas production while also generating electrical power.
Abstract:
Embodiments of a compact pressure swing reformer are disclosed. Certain embodiments have a construction comprising multiple rotating reformer beds, high temperature rotary valves at the bed ends, and E-seals to seal the beds to the valves. Several possible designs for introducing reactants into the beds also are disclosed. The multiple reformer beds are configured to provide for pressure equalization and ‘steam push’. The compact pressure swing reformer is suitable for use in fuel cell vehicle applications.
Abstract:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
Abstract:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
Abstract:
Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). At least a portion of the anode exhaust can be recycled for use as part of anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells can be operated.
Abstract:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.