Abstract:
A vehicle may be configured to detect an object within an interior of the vehicle using a vehicle sensor. The vehicle may further determine whether the object should be removed, based on a determined object value, such as may be determined by comparison of an object characteristic to a database of objects. Also, responsive to determining the object should be removed, the vehicle may schedule removal at an automated object-removal center. The vehicle may also wirelessly notify the object-removal center of vehicle arrival when the vehicle arrives at the object-removal center, including sending identification of the object, receiving indication from the object-removal center that the object has been removed, and confirming removal of the object by attempting to detect the object using the vehicle sensor, the confirmation occurring based on non-detection of the object by the vehicle that originally detected the object and requested removal.
Abstract:
A vehicle may be configured to detect an object within an interior of the vehicle using a vehicle sensor. The vehicle may further determine whether the object should be removed, based on a determined object value, such as may be determined by comparison of an object characteristic to a database of objects. Also, responsive to determining the object should be removed, the vehicle may schedule removal at an automated object-removal center. The vehicle may also wirelessly notify the object-removal center of vehicle arrival when the vehicle arrives at the object-removal center, including sending identification of the object, receiving indication from the object-removal center that the object has been removed, and confirming removal of the object by attempting to detect the object using the vehicle sensor, the confirmation occurring based on non-detection of the object by the vehicle that originally detected the object and requested removal.
Abstract:
A system includes a processor configured to access a schedule of vehicle start times. The processor is also configured to select a scheduled key-on time, when a current time is within a tunable proximity to the scheduled key-on time. Further, the processor is configured to determine if a present vehicle-related temperature warrants vehicle preconditioning and precondition the vehicle until preset preconditioning settings are established.
Abstract:
A system includes a processor configured to receive a vehicle location and to access driver-specific driving-mode-change data for the vehicle location. The processor is also configured to determine, based on the accessed data, if a vehicle driving-mode-change has previously occurred at the vehicle location and context a sufficient number of times to cross a predefined threshold and, if so, to automatically change a vehicle driving-mode to the driving-mode associated with the previous driving-mode-change.
Abstract:
A vehicle computer is communicatively coupled to a portable computing device and is programmed to determine, in a lead vehicle, that one or more conditions for a diagnostic test, such as an onboard diagnostic (OBD) test, are met and to send a vehicle-to-vehicle message to one or more following vehicles at a specified time. The sent message provides data to indicate to each following vehicle to perform the test at a specified time. The vehicle computer is further programmed to perform the test in the lead vehicle at the specified time.
Abstract:
A system includes a processor configured to access a schedule of vehicle start times. The processor is also configured to select a scheduled key-on time, when a current time is within a tunable proximity to the scheduled key-on time. Further, the processor is configured to determine if a present vehicle-related temperature warrants vehicle preconditioning and precondition the vehicle until preset preconditioning settings are established.
Abstract:
A vehicle includes a navigation system and a processing device. The navigation system is configured to identify a current location of the vehicle, a destination location, and a distance between the current location and the destination location. The processing device is configured to identify a task, associate the task to the destination location, and schedule the task according to the distance from the destination location.
Abstract:
A system includes a processor configured to project monitoring needs for a road segment. The processor is further configured to contact one or more vehicles traveling on the road segment during a time of monitoring need. The processor is additionally configured to instruct a first number, determined based on a projected monitoring need, of contacted vehicles to being monitoring and reporting traffic data for the road segment.
Abstract:
A method for tuning a vehicle's performance may include measuring a plurality of parameters representing the vehicle's current handling condition and the vehicle's limit handling condition, determining a margin between the vehicle's current handling condition and limit handling condition, characterizing the driver's dynamic control of the vehicle based on the margin, and altering at least one tunable vehicle performance parameter based on the characterization.
Abstract:
A system includes a processor configured to project monitoring needs for a road segment. The processor is further configured to contact one or more vehicles traveling on the road segment during a time of monitoring need. The processor is additionally configured to instruct a first number, determined based on a projected monitoring need, of contacted vehicles to being monitoring and reporting traffic data for the road segment